These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 15535864)

  • 1. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum.
    Huang J; Mullapudi N; Lancto CA; Scott M; Abrahamsen MS; Kissinger JC
    Genome Biol; 2004; 5(11):R88. PubMed ID: 15535864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first glimpse into the pattern and scale of gene transfer in Apicomplexa.
    Huang J; Mullapudi N; Sicheritz-Ponten T; Kissinger JC
    Int J Parasitol; 2004 Mar; 34(3):265-74. PubMed ID: 15003488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum.
    Keeling PJ
    Dev Cell; 2004 May; 6(5):614-6. PubMed ID: 15130487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.
    Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW
    Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum.
    Putignani L; Tait A; Smith HV; Horner D; Tovar J; Tetley L; Wastling JM
    Parasitology; 2004 Jul; 129(Pt 1):1-18. PubMed ID: 15267107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of putative cis-regulatory elements in Cryptosporidium parvum by de novo pattern finding.
    Mullapudi N; Lancto CA; Abrahamsen MS; Kissinger JC
    BMC Genomics; 2007 Jan; 8():13. PubMed ID: 17212834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining the Plasmodium genome database to define organellar function: what does the apicoplast do?
    Roos DS; Crawford MJ; Donald RG; Fraunholz M; Harb OS; He CY; Kissinger JC; Shaw MK; Striepen B
    Philos Trans R Soc Lond B Biol Sci; 2002 Jan; 357(1417):35-46. PubMed ID: 11839180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas.
    Moustafa A; Bhattacharya D
    BMC Evol Biol; 2008 Jan; 8():6. PubMed ID: 18194581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c.
    Green BR
    Photosynth Res; 2011 Jan; 107(1):103-15. PubMed ID: 20676772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication.
    Madern D; Cai X; Abrahamsen MS; Zhu G
    Mol Biol Evol; 2004 Mar; 21(3):489-97. PubMed ID: 14694073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.
    Ku C; Nelson-Sathi S; Roettger M; Garg S; Hazkani-Covo E; Martin WF
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10139-46. PubMed ID: 25733873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer.
    Stiller JW
    BMC Evol Biol; 2011 Sep; 11():259. PubMed ID: 21923904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum.
    Choudhary HH; Nava MG; Gartlan BE; Rose S; Vinayak S
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843543
    [No Abstract]   [Full Text] [Related]  

  • 16. The genome of Cryptosporidium hominis.
    Xu P; Widmer G; Wang Y; Ozaki LS; Alves JM; Serrano MG; Puiu D; Manque P; Akiyoshi D; Mackey AJ; Pearson WR; Dear PH; Bankier AT; Peterson DL; Abrahamsen MS; Kapur V; Tzipori S; Buck GA
    Nature; 2004 Oct; 431(7012):1107-12. PubMed ID: 15510150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptosporidium parvum appears to lack a plastid genome.
    Zhu G; Marchewka MJ; Keithly JS
    Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():315-321. PubMed ID: 10708370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B; Hoef-Emden K; Melkonian M
    BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.