These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 15535864)
21. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
22. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Abrahamsen MS; Templeton TJ; Enomoto S; Abrahante JE; Zhu G; Lancto CA; Deng M; Liu C; Widmer G; Tzipori S; Buck GA; Xu P; Bankier AT; Dear PH; Konfortov BA; Spriggs HF; Iyer L; Anantharaman V; Aravind L; Kapur V Science; 2004 Apr; 304(5669):441-5. PubMed ID: 15044751 [TBL] [Abstract][Full Text] [Related]
25. Cryptosporidium parvum genes containing thrombospondin type 1 domains. Deng M; Templeton TJ; London NR; Bauer C; Schroeder AA; Abrahamsen MS Infect Immun; 2002 Dec; 70(12):6987-95. PubMed ID: 12438378 [TBL] [Abstract][Full Text] [Related]
26. A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Fellows JD; Cipriano MJ; Agrawal S; Striepen B mBio; 2017 Jun; 8(3):. PubMed ID: 28655825 [TBL] [Abstract][Full Text] [Related]
27. Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Roberts CW; Roberts F; Henriquez FL; Akiyoshi D; Samuel BU; Richards TA; Milhous W; Kyle D; McIntosh L; Hill GC; Chaudhuri M; Tzipori S; McLeod R Int J Parasitol; 2004 Mar; 34(3):297-308. PubMed ID: 15003491 [TBL] [Abstract][Full Text] [Related]
28. Endosymbiotic origin and differential loss of eukaryotic genes. Ku C; Nelson-Sathi S; Roettger M; Sousa FL; Lockhart PJ; Bryant D; Hazkani-Covo E; McInerney JO; Landan G; Martin WF Nature; 2015 Aug; 524(7566):427-32. PubMed ID: 26287458 [TBL] [Abstract][Full Text] [Related]
29. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Huang J; Gogarten JP Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748 [TBL] [Abstract][Full Text] [Related]
30. Genetic complementation in apicomplexan parasites. Striepen B; White MW; Li C; Guerini MN; Malik SB; Logsdon JM; Liu C; Abrahamsen MS Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6304-9. PubMed ID: 11959921 [TBL] [Abstract][Full Text] [Related]
31. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489 [TBL] [Abstract][Full Text] [Related]
32. Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past? Bodył A; Mackiewicz P; Milanowski R J Parasitol; 2010 Apr; 96(2):465-75. PubMed ID: 20540605 [TBL] [Abstract][Full Text] [Related]
33. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Nikoh N; Tanaka K; Shibata F; Kondo N; Hizume M; Shimada M; Fukatsu T Genome Res; 2008 Feb; 18(2):272-80. PubMed ID: 18073380 [TBL] [Abstract][Full Text] [Related]
34. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. Keeling PJ Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. Zhang H; Guo F; Zhou H; Zhu G BMC Genomics; 2012 Nov; 13():647. PubMed ID: 23171372 [TBL] [Abstract][Full Text] [Related]
36. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Curtis BA; Tanifuji G; Burki F; Gruber A; Irimia M; Maruyama S; Arias MC; Ball SG; Gile GH; Hirakawa Y; Hopkins JF; Kuo A; Rensing SA; Schmutz J; Symeonidi A; Elias M; Eveleigh RJ; Herman EK; Klute MJ; Nakayama T; Oborník M; Reyes-Prieto A; Armbrust EV; Aves SJ; Beiko RG; Coutinho P; Dacks JB; Durnford DG; Fast NM; Green BR; Grisdale CJ; Hempel F; Henrissat B; Höppner MP; Ishida K; Kim E; Kořený L; Kroth PG; Liu Y; Malik SB; Maier UG; McRose D; Mock T; Neilson JA; Onodera NT; Poole AM; Pritham EJ; Richards TA; Rocap G; Roy SW; Sarai C; Schaack S; Shirato S; Slamovits CH; Spencer DF; Suzuki S; Worden AZ; Zauner S; Barry K; Bell C; Bharti AK; Crow JA; Grimwood J; Kramer R; Lindquist E; Lucas S; Salamov A; McFadden GI; Lane CE; Keeling PJ; Gray MW; Grigoriev IV; Archibald JM Nature; 2012 Dec; 492(7427):59-65. PubMed ID: 23201678 [TBL] [Abstract][Full Text] [Related]
37. The apicoplast: a new member of the plastid family. Maréchal E; Cesbron-Delauw MF Trends Plant Sci; 2001 May; 6(5):200-5. PubMed ID: 11335172 [TBL] [Abstract][Full Text] [Related]
38. Cryptosporidium parvum gene discovery. Abrahamsen MS Adv Exp Med Biol; 1999; 473():241-7. PubMed ID: 10659365 [TBL] [Abstract][Full Text] [Related]
39. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Gornik SG; Febrimarsa ; Cassin AM; MacRae JI; Ramaprasad A; Rchiad Z; McConville MJ; Bacic A; McFadden GI; Pain A; Waller RF Proc Natl Acad Sci U S A; 2015 May; 112(18):5767-72. PubMed ID: 25902514 [TBL] [Abstract][Full Text] [Related]
40. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Oberstaller J; Pumpalova Y; Schieler A; Llinás M; Kissinger JC Nucleic Acids Res; 2014 Jul; 42(13):8271-84. PubMed ID: 24957599 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]