BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 15536041)

  • 1. Gait analysis system for assessment of dynamic loading axis of the knee.
    Kawakami H; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Hattori A; Suzuki N
    Gait Posture; 2005 Jan; 21(1):125-30. PubMed ID: 15536041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in the locus of dynamic loading axis on the knee joint after high tibial osteotomy.
    Kawakami H; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Nakata K; Toritsuka Y; Hattori A; Suzuki N
    Gait Posture; 2005 Apr; 21(3):271-8. PubMed ID: 15760742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study.
    Agneskirchner JD; Hurschler C; Wrann CD; Lobenhoffer P
    Arthroscopy; 2007 Aug; 23(8):852-61. PubMed ID: 17681207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional MRI analysis of knee kinematics.
    Patel VV; Hall K; Ries M; Lotz J; Ozhinsky E; Lindsey C; Lu Y; Majumdar S
    J Orthop Res; 2004 Mar; 22(2):283-92. PubMed ID: 15013086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique.
    Astephen JL; Deluzio KJ
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):209-17. PubMed ID: 15621327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping.
    Gushue DL; Houck J; Lerner AL
    J Orthop Res; 2005 Jul; 23(4):735-42. PubMed ID: 16022984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal gait adaptations in medial knee OA.
    Briem K; Snyder-Mackler L
    J Orthop Res; 2009 Jan; 27(1):78-83. PubMed ID: 18634012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability and minimal clinical change determination for 3-dimensional tibial and femoral accelerations during treadmill walking in knee osteoarthritis patients.
    Turcot K; Aissaoui R; Boivin K; Hagemeister N; Pelletier M; de Guise JA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):732-7. PubMed ID: 18374005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hip and knee joint rotations differ between patients with medial and lateral knee osteoarthritis: gait analysis of 30 patients and 15 controls.
    Weidow J; Tranberg R; Saari T; Kärrholm J
    J Orthop Res; 2006 Sep; 24(9):1890-9. PubMed ID: 16838360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional dynamic analysis of knee joint during gait in medial knee osteoarthritis using loading axis of knee.
    Nishino K; Omori G; Koga Y; Kobayashi K; Sakamoto M; Tanabe Y; Tanaka M; Arakawa M
    Gait Posture; 2015 Jul; 42(2):127-32. PubMed ID: 26002602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural factors associated with malalignment in knee osteoarthritis: the Boston osteoarthritis knee study.
    Hunter DJ; Zhang Y; Niu J; Tu X; Amin S; Goggins J; Lavalley M; Guermazi A; Gale D; Felson DT
    J Rheumatol; 2005 Nov; 32(11):2192-9. PubMed ID: 16265702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of a proximal tibial opening-wedge osteotomy plate.
    Stuart MJ; Beachy AM; Grabowski JJ; An KN; Kaufman KR
    Am J Knee Surg; 1999; 12(3):148-53; discussion 153-4. PubMed ID: 10496463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo medial and lateral tibial loads during dynamic and high flexion activities.
    Zhao D; Banks SA; D'Lima DD; Colwell CW; Fregly BJ
    J Orthop Res; 2007 May; 25(5):593-602. PubMed ID: 17290383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods.
    Schache AG; Baker R; Lamoreux LW
    Gait Posture; 2006 Aug; 24(1):100-9. PubMed ID: 16191481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mobile-bearing knee prosthesis can reduce strain at the proximal tibia.
    Bottlang M; Erne OK; Lacatusu E; Sommers MB; Kessler O
    Clin Orthop Relat Res; 2006 Jun; 447():105-11. PubMed ID: 16456313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biomechanical model for the functional assessment of knee osteoarthritis.
    Kim WY; Richards J; Jones RK; Hegab A
    Knee; 2004 Jun; 11(3):225-31. PubMed ID: 15194100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knee flexion contracture will lead to mechanical overload in both limbs: a simulation study using gait analysis.
    Harato K; Nagura T; Matsumoto H; Otani T; Toyama Y; Suda Y
    Knee; 2008 Dec; 15(6):467-72. PubMed ID: 18760608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.