BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15536124)

  • 1. Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus.
    Luciani MG; Oehlmann M; Blow JJ
    J Cell Sci; 2004 Dec; 117(Pt 25):6019-30. PubMed ID: 15536124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint.
    Marheineke K; Hyrien O
    J Biol Chem; 2004 Jul; 279(27):28071-81. PubMed ID: 15123715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint.
    Hekmat-Nejad M; You Z; Yee MC; Newport JW; Cimprich KA
    Curr Biol; 2000 Dec 14-28; 10(24):1565-73. PubMed ID: 11137007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories.
    Ge XQ; Blow JJ
    J Cell Biol; 2010 Dec; 191(7):1285-97. PubMed ID: 21173116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts.
    Marheineke K; Hyrien O
    J Biol Chem; 2001 May; 276(20):17092-100. PubMed ID: 11279043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing.
    Feijoo C; Hall-Jackson C; Wu R; Jenkins D; Leitch J; Gilbert DM; Smythe C
    J Cell Biol; 2001 Sep; 154(5):913-23. PubMed ID: 11535615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest.
    Yanow SK; Gold DA; Yoo HY; Dunphy WG
    J Biol Chem; 2003 Oct; 278(42):41083-92. PubMed ID: 12897072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continued primer synthesis at stalled replication forks contributes to checkpoint activation.
    Van C; Yan S; Michael WM; Waga S; Cimprich KA
    J Cell Biol; 2010 Apr; 189(2):233-46. PubMed ID: 20385778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chk1- and claspin-dependent but ATR/ATM- and Rad17-independent DNA replication checkpoint response in HeLa cells.
    Rodríguez-Bravo V; Guaita-Esteruelas S; Florensa R; Bachs O; Agell N
    Cancer Res; 2006 Sep; 66(17):8672-9. PubMed ID: 16951182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATR and ATM regulate the timing of DNA replication origin firing.
    Shechter D; Costanzo V; Gautier J
    Nat Cell Biol; 2004 Jul; 6(7):648-55. PubMed ID: 15220931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint.
    Petersen P; Chou DM; You Z; Hunter T; Walter JC; Walter G
    Mol Cell Biol; 2006 Mar; 26(5):1997-2011. PubMed ID: 16479016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage.
    Syljuåsen RG; Sørensen CS; Hansen LT; Fugger K; Lundin C; Johansson F; Helleday T; Sehested M; Lukas J; Bartek J
    Mol Cell Biol; 2005 May; 25(9):3553-62. PubMed ID: 15831461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication.
    Costanzo V; Shechter D; Lupardus PJ; Cimprich KA; Gottesman M; Gautier J
    Mol Cell; 2003 Jan; 11(1):203-13. PubMed ID: 12535533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the DNA damage checkpoint using Xenopus egg extracts.
    Willis J; DeStephanis D; Patel Y; Gowda V; Yan S
    J Vis Exp; 2012 Nov; (69):e4449. PubMed ID: 23149695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP.
    Kim SM; Kumagai A; Lee J; Dunphy WG
    J Biol Chem; 2005 Nov; 280(46):38355-64. PubMed ID: 16186122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint.
    Byun TS; Pacek M; Yee MC; Walter JC; Cimprich KA
    Genes Dev; 2005 May; 19(9):1040-52. PubMed ID: 15833913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents.
    Liu JS; Kuo SR; Melendy T
    Mutat Res; 2003 Nov; 532(1-2):215-26. PubMed ID: 14643438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts.
    Errico A; Costanzo V; Hunt T
    Proc Natl Acad Sci U S A; 2007 Sep; 104(38):14929-34. PubMed ID: 17846426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phosphorylated C-terminal domain of Xenopus Cut5 directly mediates ATR-dependent activation of Chk1.
    Hashimoto Y; Tsujimura T; Sugino A; Takisawa H
    Genes Cells; 2006 Sep; 11(9):993-1007. PubMed ID: 16923121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDC6 interaction with ATR regulates activation of a replication checkpoint in higher eukaryotic cells.
    Yoshida K; Sugimoto N; Iwahori S; Yugawa T; Narisawa-Saito M; Kiyono T; Fujita M
    J Cell Sci; 2010 Jan; 123(Pt 2):225-35. PubMed ID: 20048340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.