BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 15536149)

  • 1. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation.
    Schwäble J; Choudhary C; Thiede C; Tickenbrock L; Sargin B; Steur C; Rehage M; Rudat A; Brandts C; Berdel WE; Müller-Tidow C; Serve H
    Blood; 2005 Mar; 105(5):2107-14. PubMed ID: 15536149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1.
    Kim KT; Carroll AP; Mashkani B; Cairns MJ; Small D; Scott RJ
    PLoS One; 2012; 7(9):e44546. PubMed ID: 22970245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PP2A-activating Drugs Enhance FLT3 Inhibitor Efficacy through AKT Inhibition-Dependent GSK-3β-Mediated c-Myc and Pim-1 Proteasomal Degradation.
    Scarpa M; Singh P; Bailey CM; Lee JK; Kapoor S; Lapidus RG; Niyongere S; Sangodkar J; Wang Y; Perrotti D; Narla G; Baer MR
    Mol Cancer Ther; 2021 Apr; 20(4):676-690. PubMed ID: 33568357
    [No Abstract]   [Full Text] [Related]  

  • 4. BRCC36 associates with FLT3-ITD to regulate its protein stability and intracellular signaling in acute myeloid leukemia.
    Liu J; Isaji T; Komatsu S; Sun Y; Xu X; Fukuda T; Fujimura T; Takahashi S; Gu J
    Cancer Sci; 2024 Apr; 115(4):1196-1208. PubMed ID: 38288901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations.
    Radomska HS; Bassères DS; Zheng R; Zhang P; Dayaram T; Yamamoto Y; Sternberg DW; Lokker N; Giese NA; Bohlander SK; Schnittger S; Delmotte MH; Davis RJ; Small D; Hiddemann W; Gilliland DG; Tenen DG
    J Exp Med; 2006 Feb; 203(2):371-81. PubMed ID: 16446383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature.
    Cauchy P; James SR; Zacarias-Cabeza J; Ptasinska A; Imperato MR; Assi SA; Piper J; Canestraro M; Hoogenkamp M; Raghavan M; Loke J; Akiki S; Clokie SJ; Richards SJ; Westhead DR; Griffiths MJ; Ott S; Bonifer C; Cockerill PN
    Cell Rep; 2015 Aug; 12(5):821-36. PubMed ID: 26212328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling.
    Arora D; Stopp S; Böhmer SA; Schons J; Godfrey R; Masson K; Razumovskaya E; Rönnstrand L; Tänzer S; Bauer R; Böhmer FD; Müller JP
    J Biol Chem; 2011 Apr; 286(13):10918-29. PubMed ID: 21262971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis.
    Tsapogas P; Mooney CJ; Brown G; Rolink A
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28538663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency.
    Flynn PA; Long MD; Kosaka Y; Mulkey JS; Coy JL; Agarwal A; Lind EF
    bioRxiv; 2023 Sep; ():. PubMed ID: 37781631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition.
    Zhu R; Shirley CM; Chu SH; Li L; Nguyen BH; Seo J; Wu M; Seale T; Duffield AS; Staudt LM; Levis M; Hu Y; Small D
    Leukemia; 2024 May; ():. PubMed ID: 38811818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRP94 rewires and buffers the FLT3-ITD signaling network and promotes survival of acute myeloid leukemic stem cells.
    Zhang B; Durán PA; Piechaczyk L; Fløisand Y; Safont MMS; Karlsen IT; Fandalyuk Z; Tadele D; Mierlo PV; Rowe AD; Robertson JM; Gjertsen BT; McCormack E; Enserink JM; ;
    Haematologica; 2018 May; Online ahead of print():. PubMed ID: 29748445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors.
    Tecik M; Adan A
    Curr Treat Options Oncol; 2024 May; ():. PubMed ID: 38696033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C/EBPα Confers Dependence to Fatty Acid Anabolic Pathways and Vulnerability to Lipid Oxidative Stress-Induced Ferroptosis in FLT3-Mutant Leukemia.
    Sabatier M; Birsen R; Lauture L; Mouche S; Angelino P; Dehairs J; Goupille L; Boussaid I; Heiblig M; Boet E; Sahal A; Saland E; Santos JC; Armengol M; Fernández-Serrano M; Farge T; Cognet G; Simonetta F; Pignon C; Graffeuil A; Mazzotti C; Avet-Loiseau H; Delos O; Bertrand-Michel J; Chedru A; Dembitz V; Gallipoli P; Anstee NS; Loo S; Wei AH; Carroll M; Goubard A; Castellano R; Collette Y; Vergez F; Mansat-De Mas V; Bertoli S; Tavitian S; Picard M; Récher C; Bourges-Abella N; Granat F; Kosmider O; Sujobert P; Colsch B; Joffre C; Stuani L; Swinnen JV; Guillou H; Roué G; Hakim N; Dejean AS; Tsantoulis P; Larrue C; Bouscary D; Tamburini J; Sarry JE
    Cancer Discov; 2023 Jul; 13(7):1720-1747. PubMed ID: 37012202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT7: an influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders.
    Kaiser A; Schmidt M; Huber O; Frietsch JJ; Scholl S; Heidel FH; Hochhaus A; Müller JP; Ernst T
    Leukemia; 2020 Aug; 34(8):2206-2216. PubMed ID: 32214204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C/EBPα and DEK coordinately regulate myeloid differentiation.
    Koleva RI; Ficarro SB; Radomska HS; Carrasco-Alfonso MJ; Alberta JA; Webber JT; Luckey CJ; Marcucci G; Tenen DG; Marto JA
    Blood; 2012 May; 119(21):4878-88. PubMed ID: 22474248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AKT1 induces caspase-mediated cleavage of the CDK inhibitor p27Kip1 during cell cycle progression in leukemia cells transformed by FLT3-ITD.
    Yang X; Liu S; Kharbanda S; Stone RM
    Leuk Res; 2012 Feb; 36(2):205-11. PubMed ID: 22142798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet Gs hypofunction and abnormal morphology resulting from a heterozygous RGS2 mutation.
    Noé L; Di Michele M; Giets E; Thys C; Wittevrongel C; De Vos R; Overbergh L; Waelkens E; Jaeken J; Van Geet C; Freson K
    J Thromb Haemost; 2010 Jul; 8(7):1594-603. PubMed ID: 20403096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MYC and PIM2 co-expression in mouse bone marrow cells readily establishes permanent myeloid cell lines that can induce lethal myeloid sarcoma in vivo.
    Jang SH; Chung HY
    Mol Cells; 2012 Aug; 34(2):201-8. PubMed ID: 22843119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a potent CDKs/FLT3 PROTAC with enhanced differentiation and proliferation inhibition for AML.
    Wu M; Wang W; Mao X; Wu Y; Jin Y; Liu T; Lu Y; Dai H; Zeng S; Huang W; Wang Y; Yao X; Che J; Ying M; Dong X
    Eur J Med Chem; 2024 May; 275():116539. PubMed ID: 38878515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Increased Expression of Regulator of G-Protein Signaling 2 (RGS2) Inhibits Insulin-Induced Akt Phosphorylation and Is Associated with Uncontrolled Glycemia in Patients with Type 2 Diabetes.
    Vazquez-Jimenez JG; Corpus-Navarro MS; Rodriguez-Chavez JM; Jaramillo-Ramirez HJ; Hernandez-Aranda J; Galindo-Hernandez O; Machado-Contreras JR; Trejo-Trejo M; Guerrero-Hernandez A; Olivares-Reyes JA
    Metabolites; 2021 Feb; 11(2):. PubMed ID: 33562475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.