These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 15536750)
1. Correspondence between chromatography, single-molecule dynamics, and equilibrium: a stochastic approach. Dondi F; Cavazzini A; Martin M Adv Chromatogr; 2005; 43():179-230. PubMed ID: 15536750 [TBL] [Abstract][Full Text] [Related]
2. Single-molecule observation and chromatography unified by Lévy process representation. Pasti L; Cavazzini A; Felinger A; Martin M; Dondi F Anal Chem; 2005 Apr; 77(8):2524-35. PubMed ID: 15828789 [TBL] [Abstract][Full Text] [Related]
3. Retention controlling and peak shape simulation in anion chromatography using multiple equilibrium model and stochastic theory. Horváth K; Olajos M; Felinger A; Hajós P J Chromatogr A; 2008 May; 1189(1-2):42-51. PubMed ID: 17719052 [TBL] [Abstract][Full Text] [Related]
5. Dynamic chromatography: A stochastic approach. Pasti L; Cavazzini A; Nassi M; Dondi F J Chromatogr A; 2010 Feb; 1217(7):1000-9. PubMed ID: 19896134 [TBL] [Abstract][Full Text] [Related]
6. Localized single molecule isotherms of DNA molecules at confined liquid-solid interfaces. Liang H; Cheng X; Ma Y Anal Chem; 2009 Mar; 81(6):2059-66. PubMed ID: 19222225 [TBL] [Abstract][Full Text] [Related]
8. Stochastic theory of size exclusion chromatography by the characteristic function approach. Dondi F; Cavazzini A; Remelli M; Felinger A; Martin M J Chromatogr A; 2002 Jan; 943(2):185-207. PubMed ID: 11833639 [TBL] [Abstract][Full Text] [Related]
9. Stochastic theory of size exclusion chromatography: peak shape analysis on single columns. Felinger A; Pasti L; Dondi F; van Hulst M; Schoenmakers PJ; Martin M Anal Chem; 2005 May; 77(10):3138-48. PubMed ID: 15889902 [TBL] [Abstract][Full Text] [Related]
11. High-performance liquid chromatographic separation of dihydropyrimidine racemates on polysaccharide-derived chiral stationary phases. Nadalini G; Dondi F; Massi A; Dondoni A; Zhang T; Cavazzini A J Chromatogr A; 2006 Sep; 1126(1-2):357-64. PubMed ID: 16806251 [TBL] [Abstract][Full Text] [Related]
12. Theoretical evaluation of methods for extracting retention factors and kinetic rate constants in liquid chromatography. Li X; McGuffin VL J Chromatogr A; 2008 Aug; 1203(1):67-80. PubMed ID: 18656885 [TBL] [Abstract][Full Text] [Related]
13. Determination of rate constants for heterogeneous mass transfer kinetics in liquid chromatography. Felinger A J Chromatogr A; 2006 Sep; 1126(1-2):120-8. PubMed ID: 16828106 [TBL] [Abstract][Full Text] [Related]
14. The statistical theory of linear capillary chromatography with uniform stationary phase. Chen Y J Chromatogr A; 2007 Mar; 1144(2):221-44. PubMed ID: 17275832 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of chromatographic performance of various packing materials having different structural characteristics as stationary phase for fast high performance liquid chromatography by new moment equations. Miyabe K J Chromatogr A; 2008 Mar; 1183(1-2):49-64. PubMed ID: 18242627 [TBL] [Abstract][Full Text] [Related]
19. Hard modeling of ion chromatography separations on hydroxide-selective stationary phase. Drgan V; Novic M; Pihlar B; Novic M J Chromatogr A; 2008 Mar; 1185(1):109-16. PubMed ID: 18289555 [TBL] [Abstract][Full Text] [Related]
20. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces. Pedesseau L; Jouanna P J Chem Phys; 2004 Dec; 121(24):12511-22. PubMed ID: 15606272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]