These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15536893)

  • 1. A theoretical model of the high-frequency arrhythmogenic depolarization signal following myocardial infarction.
    Kapela A; Bezerianos A
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1915-22. PubMed ID: 15536893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the QRS complex and detecting small changes using principal component analysis.
    Khawaja A; Dössel O
    Biomed Tech (Berl); 2007 Feb; 52(1):11-7. PubMed ID: 17313328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single moving dipole model of ventricular depolarization.
    Bu G; Berbari EJ
    Biomed Sci Instrum; 2006; 42():237-42. PubMed ID: 16817614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The QRS complex--a biomarker that "images" the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction.
    Strauss DG; Selvester RH
    J Electrocardiol; 2009; 42(1):85-96. PubMed ID: 18790501
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitative analysis of the duration of slow conduction in the reentrant circuit of ventricular tachycardia after myocardial infarction.
    Li YG; Wang QS; Israel CW; Grönefeld G; Lu SB; Ehrlich JR; Hohnloser SH
    J Cardiovasc Electrophysiol; 2008 Sep; 19(9):920-7. PubMed ID: 18399972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the location and extent of myocardial infarction using heart vector analysis.
    Ghaffari A; Atarod M; Ghasemi M
    Cardiovasc Eng; 2009 Mar; 9(1):6-10. PubMed ID: 19263222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study.
    Liu C; Li G; He B
    Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart.
    Moreau-Villéger V; Delingette H; Sermesant M; Ashikaga H; McVeigh E; Ayache N
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1457-66. PubMed ID: 16916080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing and significance of ST-segment deviation in lead aVR in acute inferior wall ST-elevation myocardial infarction.
    Zhong-qun Z; Nikus KC
    J Electrocardiol; 2010; 43(4):288-93. PubMed ID: 20381063
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac electrical instability of the arrhythmogenic tissue substrate assessed by means of wavelet transform.
    Popescu M; Laskaris N; Merloi A; Chiladakis I; Stathopoulos C; Manolis A; Cristea P; Bezerianos A
    Stud Health Technol Inform; 1997; 43 Pt B():551-5. PubMed ID: 10179726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of myocardial activation during ventricular fibrillation after myocardial infarction: evidence for sustained high-frequency sources.
    Thomas SP; Thiagalingam A; Wallace E; Kovoor P; Ross DL
    Circulation; 2005 Jul; 112(2):157-63. PubMed ID: 15998683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation.
    Armoundas AA; Feldman AB; Mukkamala R; He B; Mullen TJ; Belk PA; Lee YZ; Cohen RJ
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1360-70. PubMed ID: 14656065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of abnormal signals within the QRS complex of the high-resolution electrocardiogram.
    Gomis P; Jones DL; Caminal P; Berbari EJ; Lander P
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):681-93. PubMed ID: 9254982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cardiac rhythm features by mathematical analysis of vector fields.
    Fitzgerald TN; Brooks DH; Triedman JK
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):19-29. PubMed ID: 15651561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration.
    Clayton RH; Holden AV
    Prog Biophys Mol Biol; 2004; 85(2-3):473-99. PubMed ID: 15142758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the variability of QRS time-duration in magnetocardiographic recordings.
    Schless BG; Müller HP; Pasquarelli A; Erné SN; Hombach V
    J Med Eng Technol; 2003; 27(3):113-7. PubMed ID: 12775457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of beat-to-beat variability of frequency contents in the electrocardiogram using two-dimensional Fourier transforms.
    Spiegl A; Steinbigler P; Schmücking I; Knez A; Haberl R
    IEEE Trans Biomed Eng; 1998 Feb; 45(2):235-41. PubMed ID: 9473846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.