BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 15536904)

  • 1. Performance of large-size superconducting coil in 0.21T MRI system.
    Lee KH; Cheng MC; Chan KC; Wong KK; Yeung SS; Lee KC; Ma QY; Yang ES
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2024-30. PubMed ID: 15536904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconducting receiver coils for sodium magnetic resonance imaging.
    Miller JR; Zhang K; Ma QY; Mun IK; Jung KJ; Katz J; Face DW; Kountz DJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1197-9. PubMed ID: 9214839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and performance issues of RF coils utilized in ultra high field MRI: experimental and numerical evaluations.
    Ibrahim TS; Kangarlu A; Chakeress DW
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1278-84. PubMed ID: 16041991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 128-channel body MRI with a flexible high-density receiver-coil array.
    Hardy CJ; Giaquinto RO; Piel JE; Rohling KW; Marinelli L; Blezek DJ; Fiveland EW; Darrow RD; Foo TK
    J Magn Reson Imaging; 2008 Nov; 28(5):1219-25. PubMed ID: 18972330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction to coil array design for parallel MRI.
    Ohliger MA; Sodickson DK
    NMR Biomed; 2006 May; 19(3):300-15. PubMed ID: 16705631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner.
    Poirier-Quinot M; Ginefri JC; Girard O; Robert P; Darrasse L
    Magn Reson Med; 2008 Oct; 60(4):917-27. PubMed ID: 18816812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optimized solenoidal head radiofrequency coil for low-field magnetic resonance imaging.
    Blasiak B; Volotovskyy V; Deng C; Tomanek B
    Magn Reson Imaging; 2009 Nov; 27(9):1302-8. PubMed ID: 19559554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI.
    Yung AC; Kozlowski P
    Magn Reson Imaging; 2007 Oct; 25(8):1215-21. PubMed ID: 17905249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of multicoil breast arrays for parallel imaging.
    Marshall H; Devine PM; Shanmugaratnam N; Fobel R; Siegler P; Piron CA; Plewes DB
    J Magn Reson Imaging; 2010 Feb; 31(2):328-38. PubMed ID: 20099345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging.
    Wharton IP; Rivens IH; Ter Haar GR; Gilderdale DJ; Collins DJ; Hand JW; Abel PD; deSouza NM
    J Magn Reson Imaging; 2007 Mar; 25(3):548-56. PubMed ID: 17279503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inverted-microstrip resonator for human head proton MR imaging at 7 tesla.
    Zhang X; Ugurbil K; Sainati R; Chen W
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):495-504. PubMed ID: 15759580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dedicated two-channel phased-array receiver coil for high-resolution MRI of the rat knee cartilage at 7 T.
    Rengle A; Armenean M; Bolbos R; Goebel JC; Pinzano-Watrin A; Saint-Jalmes H; Gillet P; Beuf O
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2891-7. PubMed ID: 19932985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved SNR of phased-array PERES coils via simulation study.
    Rodríguez AO; Medina L
    Phys Med Biol; 2005 Sep; 50(18):N215-25. PubMed ID: 16148389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient coil design using Bi-2223 high temperature superconducting tape for magnetic resonance imaging.
    Yuan J; Shen GX
    Med Eng Phys; 2007 May; 29(4):442-8. PubMed ID: 16875861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.
    Erb-Eigner K; Warmuth C; Taupitz M; Willerding G; Bertelmann E; Asbach P
    Rofo; 2013 Sep; 185(9):830-7. PubMed ID: 23888471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting RF coils for clinical MR imaging at low field.
    Ma QY; Chan KC; Kacher DF; Gao E; Chow MS; Wong KK; Xu H; Yang ES; Young GS; Miller JR; Jolesz FA
    Acad Radiol; 2003 Sep; 10(9):978-87. PubMed ID: 13678086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.