BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15537010)

  • 21. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process.
    Wang X; Peng Y; Wang S; Fan J; Cao X
    Bioprocess Biosyst Eng; 2006 May; 28(6):397-404. PubMed ID: 16508737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Treatment of dairy wastewater by water hyacinth.
    Munavalli GR; Saler PS
    Water Sci Technol; 2009; 59(4):713-22. PubMed ID: 19237765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland].
    Tan HX; Liu YH; Zhou Q; Yang DH
    Huan Jing Ke Xue; 2007 Jun; 28(6):1209-15. PubMed ID: 17674724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorption capacity of Eichhornia crassipes (Mart.) Solms for zinc removal from electroplating industry wastewater.
    Durairaj S
    Environ Sci Pollut Res Int; 2024 May; 31(21):30849-30866. PubMed ID: 38622417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of Methyl Red by water-hyacinth (Eichornia crassipes) biomass.
    Tarawou T; Horsfall M; Vicente JL
    Chem Biodivers; 2007 Sep; 4(9):2236-45. PubMed ID: 17886843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of dairy waste by using water hyacinth.
    Trivedy RK; Pattanshetty SM
    Water Sci Technol; 2002; 45(12):329-34. PubMed ID: 12201119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seafood wastewater treatment in constructed wetland: tropical case.
    Sohsalam P; Englande AJ; Sirianuntapiboon S
    Bioresour Technol; 2008 Mar; 99(5):1218-24. PubMed ID: 17383179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient removal process selection for planning and design of large wastewater treatment plant upgrade needs.
    Urgun-Demirtas M; Pagilla KR; Kunetz TE; Sobanski JP; Law KP
    Water Sci Technol; 2008; 57(9):1345-8. PubMed ID: 18495997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Studies on nitrogen and phosphorus enhancing removal in combined shale and steel slag subsurface constructed wetlands].
    Tan HX; Zhou Q; Yang DH
    Huan Jing Ke Xue; 2006 Nov; 27(11):2182-7. PubMed ID: 17326423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Rural sewage treatment performance of constructed wetlands with different depths].
    Liu C; Hu H; Zhang J; Huang X; Shi H; Qian Y
    Huan Jing Ke Xue; 2003 Sep; 24(5):92-6. PubMed ID: 14719267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR).
    Lesjean B; Gnirss R; Buisson H; Keller S; Tazi-Pain A; Luck F
    Water Sci Technol; 2005; 52(10-11):453-60. PubMed ID: 16459821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen removal influence factors in A/O process and decision trees for nitrification/denitrification system.
    Ma Y; Peng YZ; Wang SY; Wang XL
    J Environ Sci (China); 2004; 16(6):901-7. PubMed ID: 15900717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particulates, not plants, dominate nitrogen processing in a septage-treating aerated pond system.
    Hamersley MR; Howes BL; White DS
    J Environ Qual; 2003; 32(5):1895-904. PubMed ID: 14535335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstration of enhanced nutrient removal at two full-scale SBR plants.
    Peters M; Newland M; Seviour T; Broom T; Bridle T
    Water Sci Technol; 2004; 50(10):115-20. PubMed ID: 15656303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The potential for water hyacinth to improve the quality of Bogota River water in the Muña Reservoir: comparison with the performance of waste stabilization ponds.
    Giraldo E; Garzón A
    Water Sci Technol; 2002; 45(1):103-10. PubMed ID: 11833723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanide phytoremediation by water hyacinths (Eichhornia crassipes).
    Ebel M; Evangelou MW; Schaeffer A
    Chemosphere; 2007 Jan; 66(5):816-23. PubMed ID: 16870228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.