These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15537087)

  • 1. Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans.
    Rogers MB; Archibald JM; Field MA; Li C; Striepen B; Keeling PJ
    J Eukaryot Microbiol; 2004; 51(5):529-35. PubMed ID: 15537087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.
    Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ
    Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.
    Gile GH; Keeling PJ
    Mol Biol Evol; 2008 Sep; 25(9):1967-77. PubMed ID: 18599495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.
    Archibald JM; Rogers MB; Toop M; Ishida K; Keeling PJ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7678-83. PubMed ID: 12777624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus.
    Gilson PR; Su V; Slamovits CH; Reith ME; Keeling PJ; McFadden GI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9566-71. PubMed ID: 16760254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae.
    Hirakawa Y; Ishida K
    BMC Plant Biol; 2015 Nov; 15():276. PubMed ID: 26556725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans.
    Hopkins JF; Spencer DF; Laboissiere S; Neilson JA; Eveleigh RJ; Durnford DG; Gray MW; Archibald JM
    Genome Biol Evol; 2012; 4(12):1391-406. PubMed ID: 23221610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga.
    Hirakawa Y; Ishida K
    Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein targeting into secondary plastids of chlorarachniophytes.
    Hirakawa Y; Nagamune K; Ishida K
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12820-5. PubMed ID: 19620731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chlorarachniophyte nucleomorph is supplemented with host cell nucleus-encoded histones.
    Löffelhardt W
    Mol Microbiol; 2011 Jun; 80(6):1413-6. PubMed ID: 21518391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae.
    Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM
    BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans.
    Suzuki S; Ishida K; Hirakawa Y
    Genome Biol Evol; 2016 Sep; 8(9):2672-82. PubMed ID: 27503292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastids and protein targeting.
    McFadden GI
    J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii.
    Tonkin CJ; Roos DS; McFadden GI
    Mol Biochem Parasitol; 2006 Dec; 150(2):192-200. PubMed ID: 16963133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transit peptide diversity and divergence: A global analysis of plastid targeting signals.
    Patron NJ; Waller RF
    Bioessays; 2007 Oct; 29(10):1048-58. PubMed ID: 17876808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.
    Vesteg M; Vacula R; Krajcovic J
    Folia Microbiol (Praha); 2009; 54(4):303-21. PubMed ID: 19826918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Mol Microbiol; 2011 Jun; 80(6):1439-49. PubMed ID: 21470316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.
    Felsner G; Sommer MS; Maier UG
    BMC Plant Biol; 2010 Oct; 10():223. PubMed ID: 20958984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.