BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15537292)

  • 1. Preliminary studies for the differentiation of apple juice samples by chemometric analysis of solid-phase microextraction-gas chromatographic data.
    Reid LM; O'Donnell CP; Kelly JD; Downey G
    J Agric Food Chem; 2004 Nov; 52(23):6891-6. PubMed ID: 15537292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technological classification of basque cider apple cultivars according to their polyphenolic profiles by pattern recognition analysis.
    Alonso-Salces RM; Herrero C; Barranco A; Berrueta LA; Gallo B; Vicente F
    J Agric Food Chem; 2004 Dec; 52(26):8006-16. PubMed ID: 15612789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of apple juice adulteration using near-infrared transflectance spectroscopy.
    León L; Kelly JD; Downey G
    Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of different apple cultivars by high resolution magic angle spinning NMR. A feasibility study.
    Vermathen M; Marzorati M; Baumgartner D; Good C; Vermathen P
    J Agric Food Chem; 2011 Dec; 59(24):12784-93. PubMed ID: 22084979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemometric classification of apple juices according to variety and geographical origin based on polyphenolic profiles.
    Guo J; Yue T; Yuan Y; Wang Y
    J Agric Food Chem; 2013 Jul; 61(28):6949-63. PubMed ID: 23815505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature selection and recognition from nonspecific volatile profiles for discrimination of apple juices according to variety and geographical origin.
    Guo J; Yue T; Yuan Y
    J Food Sci; 2012 Oct; 77(10):C1090-6. PubMed ID: 23009695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the 1H nuclear magnetic resonance spectra signals from polyphenols and acids for chemometric characterization of cider apple juices.
    Del Campo G; Santos JI; Iturriza N; Berregi I; Munduate A
    J Agric Food Chem; 2006 Apr; 54(8):3095-100. PubMed ID: 16608236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of apple juice concentrate in the manufacture of natural and sparkling cider by means of HPLC chemometric sugar analyses.
    Blanco Gomis D; Muro Tamayo D; Suárez Valles B; Mangas Alonso JJ
    J Agric Food Chem; 2004 Jan; 52(2):201-3. PubMed ID: 14733495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic removal of off-flavors from apple juice.
    Schroeder M; Pöllinger-Zierler B; Aichernig N; Siegmund B; Guebitz GM
    J Agric Food Chem; 2008 Apr; 56(7):2485-9. PubMed ID: 18318500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of juices and fermented beverages made from unripe, ripe and senescent apples based on the aromatic profile using chemometrics.
    Braga CM; Zielinski AA; Silva KM; de Souza FK; Pietrowski Gde A; Couto M; Granato D; Wosiacki G; Nogueira A
    Food Chem; 2013 Nov; 141(2):967-74. PubMed ID: 23790875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for the determination of total 1,3-octanediols in apple juice via 1,3-dioxanes by solid-phase microextraction and high-speed gas chromatography.
    Díaz Llorente D; Arias Abrodo P; Dapena de la Fuente E; Mangas Alonso JJ; Gutiérrez Alvarez MD; Blanco Gomis D
    J Chromatogr A; 2010 Apr; 1217(18):2993-9. PubMed ID: 20299018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid differentiation of new apple cultivars by headspace solid-phase microextraction in combination with chemometrical data processing.
    Schulz I; Ulrich D; Fischer C
    Nahrung; 2003 Apr; 47(2):136-9. PubMed ID: 12744294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics.
    Kelly JF; Downey G
    J Agric Food Chem; 2005 May; 53(9):3281-6. PubMed ID: 15853360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Typification of cider brandy on the basis of cider used in its manufacture.
    Rodríguez Madrera R; Mangas Alonso JJ
    J Agric Food Chem; 2005 Apr; 53(8):3071-5. PubMed ID: 15826061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of SPME-GC and chemometrics to detect adulteration of soft fruit purées.
    Reid LM; O'Donnell CP; Downey G
    J Agric Food Chem; 2004 Feb; 52(3):421-7. PubMed ID: 14759127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification - a case study: geographical provenance and cultivar classification of monovarietal clarified apple juices.
    Gan HH; Soukoulis C; Fisk I
    Food Chem; 2014 Mar; 146():149-56. PubMed ID: 24176326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and concentration of polyphenolic antioxidants in apple juice. 2. Effect of novel production methods.
    van der Sluis AA; Dekker M; Skrede G; Jongen WM
    J Agric Food Chem; 2004 May; 52(10):2840-8. PubMed ID: 15137823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of processing treatment and sorbate addition on the flavor characteristics of apple cider.
    Boylston TD; Wang H; Reitmeier CA; Glatz BA
    J Agric Food Chem; 2003 Mar; 51(7):1924-31. PubMed ID: 12643653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ester variability in apple varieties as determined by solid-phase microextraction and gas chromatography-mass spectrometry.
    Young JC; Chu CL; Lu X; Zhu H
    J Agric Food Chem; 2004 Dec; 52(26):8086-93. PubMed ID: 15612800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.