These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15537498)

  • 1. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
    Sharifov OF; Ideker RE; Fast VG
    Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations.
    Sharifov OF; Fast VG
    Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential.
    Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE
    Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do intramural virtual electrodes facilitate successful defibrillation? Model-based analysis of experimental evidence.
    Hooks DA; Trew ML; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2006 Mar; 17(3):305-11. PubMed ID: 16643406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface.
    Sharifov OF; Fast VG
    Heart Rhythm; 2006 Sep; 3(9):1063-73. PubMed ID: 16945803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-threshold field stimulation: intramural versus surface activation.
    Zemlin CW; Mironov S; Pertsov AM
    Cardiovasc Res; 2006 Jan; 69(1):98-106. PubMed ID: 16226236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
    Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2003 Nov; 14(11):1215-22. PubMed ID: 14678138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation.
    Evans FG; Gray RA
    J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that activation following failed defibrillation is not caused by triggered activity.
    Zheng X; Walcott GP; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 2005 Nov; 16(11):1200-5. PubMed ID: 16302904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures.
    Fast VG; Cheek ER; Pollard AE; Ideker RE
    Circ Res; 2004 Jun; 94(12):1589-97. PubMed ID: 15155528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation.
    Rosborough JP; Deno DC; Walker RG; Niemann JT
    Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-shock synchronized pacing in isolated rabbit left ventricle: evaluation of a novel defibrillation strategy.
    Tang L; Hwang GS; Song J; Chen PS; Lin SF
    J Cardiovasc Electrophysiol; 2007 Jul; 18(7):740-9. PubMed ID: 17388914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunnel propagation following defibrillation with ICD shocks: hidden postshock activations in the left ventricular wall underlie isoelectric window.
    Constantino J; Long Y; Ashihara T; Trayanova NA
    Heart Rhythm; 2010 Jul; 7(7):953-61. PubMed ID: 20348028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of shock strengths on ventricular defibrillation failure.
    Chattipakorn N; Banville I; Gray RA; Ideker RE
    Cardiovasc Res; 2004 Jan; 61(1):39-44. PubMed ID: 14732200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is all ventricular fibrillation the same? A comparison of ischemically induced with electrically induced ventricular fibrillation in a porcine cardiac arrest and resuscitation model.
    Niemann JT; Rosborough JP; Youngquist S; Thomas J; Lewis RJ
    Crit Care Med; 2007 May; 35(5):1356-61. PubMed ID: 17414084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.