BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 15537674)

  • 1. Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.
    Murray MM; Molholm S; Michel CM; Heslenfeld DJ; Ritter W; Javitt DC; Schroeder CE; Foxe JJ
    Cereb Cortex; 2005 Jul; 15(7):963-74. PubMed ID: 15537674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady state responses to temporally congruent and incongruent auditory and vibrotactile amplitude modulated stimulation.
    Budd TW; Timora JR
    Int J Psychophysiol; 2013 Sep; 89(3):419-32. PubMed ID: 23769951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations.
    Senkowski D; Talsma D; Grigutsch M; Herrmann CS; Woldorff MG
    Neuropsychologia; 2007 Feb; 45(3):561-71. PubMed ID: 16542688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities.
    Noel JP; Simon D; Thelen A; Maier A; Blake R; Wallace MT
    J Cogn Neurosci; 2018 Jun; 30(6):814-828. PubMed ID: 29488853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unisensory processing and multisensory integration in schizophrenia: a high-density electrical mapping study.
    Stone DB; Urrea LJ; Aine CJ; Bustillo JR; Clark VP; Stephen JM
    Neuropsychologia; 2011 Oct; 49(12):3178-87. PubMed ID: 21807011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of spatial congruity on audio-visual multimodal integration.
    Teder-Sälejärvi WA; Di Russo F; McDonald JJ; Hillyard SA
    J Cogn Neurosci; 2005 Sep; 17(9):1396-409. PubMed ID: 16197693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensory interactions within human primary cortices revealed by BOLD dynamics.
    Martuzzi R; Murray MM; Michel CM; Thiran JP; Maeder PP; Clarke S; Meuli RA
    Cereb Cortex; 2007 Jul; 17(7):1672-9. PubMed ID: 16968869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory-somatosensory multisensory interactions in front and rear space.
    Zampini M; Torresan D; Spence C; Murray MM
    Neuropsychologia; 2007 Apr; 45(8):1869-77. PubMed ID: 17291546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration.
    Mercier MR; Foxe JJ; Fiebelkorn IC; Butler JS; Schwartz TH; Molholm S
    Neuroimage; 2013 Oct; 79():19-29. PubMed ID: 23624493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of temporal asynchrony on multisensory integration in the processing of asynchronous audio-visual stimuli of real-world events: an event-related potential study.
    Liu B; Jin Z; Wang Z; Gong C
    Neuroscience; 2011 Mar; 176():254-64. PubMed ID: 21185358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of psychophysical and EEG steady-state response measures of cross-modal temporal correspondence for amplitude modulated acoustic and vibrotactile stimulation.
    Timora JR; Budd TW
    Int J Psychophysiol; 2013 Sep; 89(3):433-43. PubMed ID: 23770083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations.
    Eimer M; van Velzen J; Driver J
    J Cogn Neurosci; 2002 Feb; 14(2):254-71. PubMed ID: 11970790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation.
    Kuś R; Spustek T; Zieleniewska M; Duszyk A; Rogowski P; Suffczyński P
    J Neural Eng; 2017 Dec; 14(6):066002. PubMed ID: 28786397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical EEG components that reflect inverse effectiveness during visuotactile integration processing.
    Kanayama N; Kimura K; Hiraki K
    Brain Res; 2015 Feb; 1598():18-30. PubMed ID: 25514335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exploratory event-related potential study of multisensory integration in sensory over-responsive children.
    Brett-Green BA; Miller LJ; Schoen SA; Nielsen DM
    Brain Res; 2010 Mar; 1321():67-77. PubMed ID: 20097181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory-visual multisensory interactions attenuate subsequent visual responses in humans.
    Meylan RV; Murray MM
    Neuroimage; 2007 Mar; 35(1):244-54. PubMed ID: 17215144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation.
    Meyer M; Baumann S; Marchina S; Jancke L
    BMC Neurosci; 2007 Feb; 8():14. PubMed ID: 17284307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study.
    Giard MH; Peronnet F
    J Cogn Neurosci; 1999 Sep; 11(5):473-90. PubMed ID: 10511637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.
    Mercier MR; Molholm S; Fiebelkorn IC; Butler JS; Schwartz TH; Foxe JJ
    J Neurosci; 2015 Jun; 35(22):8546-57. PubMed ID: 26041921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.