BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15538187)

  • 1. Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington's disease.
    Borlongan CV; Skinner SJ; Geaney M; Vasconcellos AV; Elliott RB; Emerich DF
    Neuroreport; 2004 Nov; 15(16):2521-5. PubMed ID: 15538187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplants of encapsulated rat choroid plexus cells exert neuroprotection in a rodent model of Huntington's disease.
    Borlongan CV; Thanos CG; Skinner SJ; Geaney M; Emerich DF
    Cell Transplant; 2008; 16(10):987-92. PubMed ID: 18351014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro culture duration does not impact the ability of encapsulated choroid plexus transplants to prevent neurological deficits in an excitotoxin-lesioned rat model of Huntington's disease.
    Emerich DF; Thanos CG
    Cell Transplant; 2006; 15(7):595-602. PubMed ID: 17176611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplants of Encapsulated Rat Choroid Plexus Cells Exert Neuroprotection in a Rodent Model of Huntington's Disease.
    Borlongan CV; Thanos CG; Skinner SJM; Geaney M; Emerich DF
    Cell Transplant; 2007 Nov; 16(10):987-992. PubMed ID: 28866919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular delivery of CNTF but not NT-4/5 prevents degeneration of striatal neurons in a rodent model of Huntington's disease.
    Emerich DF; Bruhn S; Chu Y; Kordower JH
    Cell Transplant; 1998; 7(2):213-25. PubMed ID: 9588602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys.
    Emerich DF; Thanos CG; Goddard M; Skinner SJ; Geany MS; Bell WJ; Bintz B; Schneider P; Chu Y; Babu RS; Borlongan CV; Boekelheide K; Hall S; Bryant B; Kordower JH
    Neurobiol Dis; 2006 Aug; 23(2):471-80. PubMed ID: 16777422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease.
    Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD
    Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease.
    Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD
    Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease.
    Emerich DF; Cain CK; Greco C; Saydoff JA; Hu ZY; Liu H; Lindner MD
    Cell Transplant; 1997; 6(3):249-66. PubMed ID: 9171158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravenous administration of human neural stem cells induces functional recovery in Huntington's disease rat model.
    Lee ST; Chu K; Park JE; Lee K; Kang L; Kim SU; Kim M
    Neurosci Res; 2005 Jul; 52(3):243-9. PubMed ID: 15896865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats.
    Borlongan CV; Skinner SJ; Geaney M; Vasconcellos AV; Elliott RB; Emerich DF
    Neuroreport; 2004 Jul; 15(10):1543-7. PubMed ID: 15232280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke.
    Borlongan CV; Skinner SJ; Geaney M; Vasconcellos AV; Elliott RB; Emerich DF
    Stroke; 2004 Sep; 35(9):2206-10. PubMed ID: 15284450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington's disease.
    Emerich DF; Lindner MD; Winn SR; Chen EY; Frydel BR; Kordower JH
    J Neurosci; 1996 Aug; 16(16):5168-81. PubMed ID: 8756445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion.
    Visnyei K; Tatsukawa KJ; Erickson RI; Simonian S; Oknaian N; Carmichael ST; Kornblum HI
    Exp Neurol; 2006 Feb; 197(2):465-74. PubMed ID: 16310773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease.
    Araujo DM; Hilt DC
    Neuroscience; 1997 Dec; 81(4):1099-110. PubMed ID: 9330371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable hydrogels providing sustained delivery of vascular endothelial growth factor are neuroprotective in a rat model of Huntington's disease.
    Emerich DF; Mooney DJ; Storrie H; Babu RS; Kordower JH
    Neurotox Res; 2010 Jan; 17(1):66-74. PubMed ID: 19588214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid.
    Alexi T; Venero JL; Hefti F
    Neuroscience; 1997 May; 78(1):73-86. PubMed ID: 9135090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease.
    Döbrössy MD; Dunnett SB
    Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington's disease.
    Giampà C; DeMarch Z; D'Angelo V; Morello M; Martorana A; Sancesario G; Bernardi G; Fusco FR
    Eur J Neurosci; 2006 Jan; 23(1):11-20. PubMed ID: 16420411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.