BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15538576)

  • 1. Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves.
    Ivic-Haymes SD; Smigocki AC
    Plant Cell Rep; 2005 Mar; 23(10-11):699-704. PubMed ID: 15538576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic transformation of two species of orchid by biolistic bombardment.
    Men S; Ming X; Wang Y; Liu R; Wei C; Li Y
    Plant Cell Rep; 2003 Feb; 21(6):592-8. PubMed ID: 12789435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastid transformation in sugar beet: Beta vulgaris.
    De Marchis F; Bellucci M
    Methods Mol Biol; 2014; 1132():367-73. PubMed ID: 24599867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer.
    Gao C; Jiang L; Folling M; Han L; Nielsen KK
    Plant Cell Rep; 2006 Feb; 25(1):19-25. PubMed ID: 16328388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency biolistic co-transformation and regeneration of 'Chardonnay' (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes.
    Vidal JR; Kikkert JR; Wallace PG; Reisch BI
    Plant Cell Rep; 2003 Nov; 22(4):252-60. PubMed ID: 12908080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient callus formation and plant regeneration are heritable characters in sugar beet (
    Kagami H; Taguchi K; Arakawa T; Kuroda Y; Tamagake H; Kubo T
    Hereditas; 2016; 153():12. PubMed ID: 28096774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana.
    Thurau T; Kifle S; Jung C; Cai D
    Plant Mol Biol; 2003 Jun; 52(3):643-60. PubMed ID: 12956533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures.
    Schöpke C; Taylor N; Cárcamo R; Konan NK; Marmey P; Henshaw GG; Beachy RN; Fauquet C
    Nat Biotechnol; 1996 Jun; 14(6):731-5. PubMed ID: 9630980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.).
    Wu H; Acanda Y; Jia H; Wang N; Zale J
    Plant Cell Rep; 2016 Sep; 35(9):1955-62. PubMed ID: 27277128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastid Transformation in Sugar Beet: An Important Industrial Crop.
    De Marchis F; Bellucci M
    Methods Mol Biol; 2021; 2317():283-290. PubMed ID: 34028776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genetic transformation of sugar beet: evolution of theoretical and experimental approaches].
    Golovko AE; Dovzhenko AA; Gleba IuIu
    Tsitol Genet; 2005; 39(3):30-6. PubMed ID: 16250243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves.
    Nieberl P; Ehrl C; Pommerrenig B; Graus D; Marten I; Jung B; Ludewig F; Koch W; Harms K; Flügge UI; Neuhaus HE; Hedrich R; Sauer N
    Plant Biol (Stuttg); 2017 May; 19(3):315-326. PubMed ID: 28075052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar beet (Beta vulgaris L.).
    Kagami H; Kurata M; Matsuhira H; Taguchi K; Mikami T; Tamagake H; Kubo T
    Methods Mol Biol; 2015; 1223():335-47. PubMed ID: 25300853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment.
    Gao C; Long D; Lenk I; Nielsen KK
    Plant Cell Rep; 2008 Oct; 27(10):1601-9. PubMed ID: 18648817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable transformation of embryogenic tissues of Pinus nigra Arn. using a biolistic method.
    Salaj T; Moravcíková J; Grec-Niquet L; Salaj J
    Biotechnol Lett; 2005 Jul; 27(13):899-903. PubMed ID: 16091883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic transformation of the sugar beet plastome.
    De Marchis F; Wang Y; Stevanato P; Arcioni S; Bellucci M
    Transgenic Res; 2009 Feb; 18(1):17-30. PubMed ID: 18551377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient protocol for genetic transformation and shoot regeneration of turmeric (Curcuma longa L.) via particle bombardment.
    Shirgurkar MV; Naik VB; von Arnold S; Nadgauda RS; Clapham D
    Plant Cell Rep; 2006 Mar; 25(2):112-6. PubMed ID: 16397786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable transformation of plant cells by particle bombardment/biolistics.
    Kikkert JR; Vidal JR; Reisch BI
    Methods Mol Biol; 2005; 286():61-78. PubMed ID: 15310913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.
    Zhang T; Wu SJ
    Methods Mol Biol; 2012; 847():245-53. PubMed ID: 22351014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient expression of the beta-glucuronidase gene in tissues of Arabidopsis thaliana by bombardment-mediated transformation.
    Seki M; Iida A; Morikawa H
    Mol Biotechnol; 1999 Jun; 11(3):251-5. PubMed ID: 10503241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.