BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15538653)

  • 21. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.
    Shimamura S; Yamamoto R; Nakamura T; Shimada S; Komatsu S
    Ann Bot; 2010 Aug; 106(2):277-84. PubMed ID: 20660468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance.
    Stevens KJ; Peterson RL; Reader RJ
    Ann Bot; 2002 May; 89(5):621-5. PubMed ID: 12099537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus.
    Verboven P; Pedersen O; Herremans E; Ho QT; Nicolaï BM; Colmer TD; Teakle N
    New Phytol; 2012 Jan; 193(2):420-31. PubMed ID: 22029709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots.
    Joshi R; Shukla A; Mani SC; Kumar P
    Physiol Mol Biol Plants; 2010 Jan; 16(1):99-106. PubMed ID: 23572959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance.
    Zhang X; Zhou G; Shabala S; Koutoulis A; Shabala L; Johnson P; Li C; Zhou M
    Theor Appl Genet; 2016 Jun; 129(6):1167-77. PubMed ID: 26908252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Root features related to plant growth and nutrient removal of 35 wetland plants.
    Lai WL; Wang SQ; Peng CL; Chen ZH
    Water Res; 2011 Jul; 45(13):3941-50. PubMed ID: 21640369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of
    Ning J; Yamauchi T; Takahashi H; Omori F; Mano Y; Nakazono M
    Front Plant Sci; 2023; 14():1133009. PubMed ID: 37152158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of
    Huang L; Liang YK; Liang Y; Luo X; Chen YC
    Huan Jing Ke Xue; 2019 Mar; 40(3):1280-1286. PubMed ID: 31087975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoskeleton during aerenchyma formation in plants.
    Kordyum EL; Shevchenko GV; Brykov VO
    Cell Biol Int; 2019 Sep; 43(9):991-998. PubMed ID: 28665000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in cell structure during the formation of root aerenchyma inSAGITTARIA LANCIFOLIA (Alismataceae).
    Schussler EE; Longstreth DJ
    Am J Bot; 2000 Jan; 87(1):12-9. PubMed ID: 10636825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
    Ranathunge K; Steudle E; Lafitte R
    Planta; 2003 Jun; 217(2):193-205. PubMed ID: 12783327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into trophic aerenchyma formation strategy in maize (Zea mays L.) organs during sulfate deprivation.
    Maniou F; Chorianopoulou SN; Bouranis DL
    Front Plant Sci; 2014; 5():581. PubMed ID: 25404934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions.
    Abiko T; Miyasaka SC
    J Plant Res; 2020 Jan; 133(1):49-56. PubMed ID: 31720886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of wastewater discharge on root anatomy and radial oxygen loss (ROL) patterns of three mangrove species in southern China.
    Pi N; Tam NF; Wong MH
    Int J Phytoremediation; 2010 Jul; 12(5):468-86. PubMed ID: 21166289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate.
    Yang X; Li Y; Ren B; Ding L; Gao C; Shen Q; Guo S
    Plant Cell Physiol; 2012 Mar; 53(3):495-504. PubMed ID: 22257489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative anatomy and salt management of
    Tatongjai S; Kraichak E; Kermanee P
    PeerJ; 2021; 9():e10962. PubMed ID: 33665038
    [No Abstract]   [Full Text] [Related]  

  • 38. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth-dependent chemical and mechanical properties of cuticular membranes from leaves of Sonneratia alba.
    Takahashi Y; Tsubaki S; Sakamoto M; Watanabe S; Azuma J
    Plant Cell Environ; 2012 Jul; 35(7):1201-10. PubMed ID: 22239411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Longitudinal Pattern of Aerenchyma Formation Using the Ti-Gompertz Model in Rice Adventitious Roots.
    Chen Y; Li G; Zhao B; Zhang Y; Liu K; Nadeeshika Samarawickrama P; Wu X; Lv B; Liu L
    Front Plant Sci; 2021; 12():776971. PubMed ID: 34917110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.