These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 1553869)
1. [1H-NMR study on protein of normal and galactose cataractous rat whole lenses]. Kaizuka Y Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):15-21. PubMed ID: 1553869 [TBL] [Abstract][Full Text] [Related]
2. Alteration of crystallin polypeptides in rat lenses during the development of galactose-induced cataract. Zhao H; Ren X Yan Ke Xue Bao; 1993 Sep; 9(3):143-5. PubMed ID: 8168609 [TBL] [Abstract][Full Text] [Related]
3. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Saxena P; Saxena AK; Monnier VM Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357 [TBL] [Abstract][Full Text] [Related]
4. Changes of lens protein particles during development and reversal of galactose cataracts. Study by laser scattering spectroscopy. Kaneda M; Majima Y; Hattori H; Torii H Ophthalmic Res; 1990; 22 Suppl 1():95-100. PubMed ID: 2388762 [TBL] [Abstract][Full Text] [Related]
5. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
7. Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy. Fris M; Tessem MB; Saether O; Midelfart A Acta Ophthalmol Scand; 2006 Oct; 84(5):684-92. PubMed ID: 16965502 [TBL] [Abstract][Full Text] [Related]
8. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
9. Estimation of structural changes in the cataractous rat lens using Raman spectroscopy. Horikiri K; Nakajima H; Matsuura T; Narama I; Fujimoto Y; Ozaki Y Jikken Dobutsu; 1992 Apr; 41(2):225-30. PubMed ID: 1577084 [TBL] [Abstract][Full Text] [Related]
10. Changes of urea-soluble and intrinsic membrane proteins in rat lenses during the formation of galactose cataract. Zhao HR; Ren XH Ophthalmic Res; 1992; 24(5):285-8. PubMed ID: 1475076 [TBL] [Abstract][Full Text] [Related]
11. Postnatal biochemical changes in rat lens: an important factor in cataract models. Fris M; Midelfart A Curr Eye Res; 2007 Feb; 32(2):95-103. PubMed ID: 17364742 [TBL] [Abstract][Full Text] [Related]
12. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses. Manski W; Malinowski K Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353 [TBL] [Abstract][Full Text] [Related]
13. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
14. Elemental distribution in frozen-hydrated rat lenses with galactose cataract. Koyama-Ito H Lens Eye Toxic Res; 1990; 7(3-4):577-91. PubMed ID: 2100179 [TBL] [Abstract][Full Text] [Related]
15. Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract. Sakagami K; Igarashi H; Tanaka K; Yoshida A Hokkaido Igaku Zasshi; 1999 Nov; 74(6):457-66. PubMed ID: 10642892 [TBL] [Abstract][Full Text] [Related]
16. Assessment of sulfhydryl group in individual rat lens protein subunits during galactose cataract development. Pan S; Hua JC; Calvin HI; Fu SC Yan Ke Xue Bao; 1994 Mar; 10(1):21-6. PubMed ID: 7843379 [TBL] [Abstract][Full Text] [Related]
17. Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter. Cai MZ; Kuck JF; Yu NT Exp Eye Res; 1989 Oct; 49(4):531-41. PubMed ID: 2806422 [TBL] [Abstract][Full Text] [Related]
18. Nuclear magnetic resonance analyses of the cold cataract: whole lens studies. Lerman S; Ashley DL; Long RC; Goldstein JH; Megaw JM; Gardner K Invest Ophthalmol Vis Sci; 1982 Aug; 23(2):218-26. PubMed ID: 7096016 [TBL] [Abstract][Full Text] [Related]
19. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
20. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. David LL; Azuma M; Shearer TR Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]