These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 1553869)
21. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
22. [Detection of sorbitol content in crystalline lens of normal rats and rats with diabetic cataract by 1H-NMR]. Zhang S; Zhaug Y; Liu X; Liu Q; Zhang M; He Y Hua Xi Yi Ke Da Xue Xue Bao; 1990 Jun; 21(2):125-7. PubMed ID: 2391091 [TBL] [Abstract][Full Text] [Related]
23. Alterations in lens permeability during galactose cataract development in rat. Johnson MJ; Unakar NJ Lens Eye Toxic Res; 1992; 9(2):93-113. PubMed ID: 1375837 [TBL] [Abstract][Full Text] [Related]
24. Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy. Tessem MB; Bathen TF; Löfgren S; Saether O; Mody V; Meyer L; Dong X; Söderberg PG; Midelfart A Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5404-11. PubMed ID: 17122130 [TBL] [Abstract][Full Text] [Related]
25. The effects of digitalis-like compounds on rat lenses. Lichtstein D; Levy T; Deutsch J; Steinitz M; Zigler JS; Russell P Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):407-13. PubMed ID: 9950600 [TBL] [Abstract][Full Text] [Related]
26. Reversal of the limited proteolysis of MP26 during the reversal and prevention of the galactose cataract in rat lenses. Alcala J; Unakar N; Katar M; Tsui J Curr Eye Res; 1990 Mar; 9(3):225-32. PubMed ID: 2189687 [TBL] [Abstract][Full Text] [Related]
27. Cataract development in 12-month-old rats fed a 25% galactose diet and its relation to osmotic stress and oxidative damage. Ohta Y; Yamasaki T; Niwa T; Goto H; Majima Y; Ishiguro I Ophthalmic Res; 1999; 31(5):321-31. PubMed ID: 10420116 [TBL] [Abstract][Full Text] [Related]
28. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
29. 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens. Nakamura K; Jung YM; Era S; Sogami M; Ozaki Y; Takasaki A Biochim Biophys Acta; 2000 Mar; 1474(1):23-30. PubMed ID: 10699486 [TBL] [Abstract][Full Text] [Related]
30. [The oxidative stress in the cataract formation]. Obara Y Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853 [TBL] [Abstract][Full Text] [Related]
31. Time dependency of metabolic changes in rat lens after in vivo UVB irradiation analysed by HR-MAS 1H NMR spectroscopy. Risa O; Saether O; Kakar M; Mody V; Löfgren S; Söderberg PG; Krane J; Midelfart A Exp Eye Res; 2005 Oct; 81(4):407-14. PubMed ID: 16185952 [TBL] [Abstract][Full Text] [Related]
32. Alterations of lens protein synthesis in galactosemic rats. Kador PF; Zigler JS; Kinoshita JH Invest Ophthalmol Vis Sci; 1979 Jul; 18(7):696-702. PubMed ID: 447468 [TBL] [Abstract][Full Text] [Related]
33. MP26 messenger RNA sequences in normal and cataractous lens. A molecular probe for abundance and distribution of a fiber cell-specific gene product. Bekhor I Invest Ophthalmol Vis Sci; 1988 May; 29(5):802-13. PubMed ID: 3366569 [TBL] [Abstract][Full Text] [Related]
34. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: in vivo and in vitro evaluation. Agarwal R; Iezhitsa I; Awaludin NA; Ahmad Fisol NF; Bakar NS; Agarwal P; Abdul Rahman TH; Spasov A; Ozerov A; Mohamed Ahmed Salama MS; Mohd Ismail N Exp Eye Res; 2013 May; 110():35-43. PubMed ID: 23428743 [TBL] [Abstract][Full Text] [Related]
35. Racemization of aspartyl residues in proteins from normal and cataractous human lenses: an aging process without involvement in cataract formation. van den Oetelaar PJ; Hoenders HJ Exp Eye Res; 1989 Feb; 48(2):209-14. PubMed ID: 2924808 [TBL] [Abstract][Full Text] [Related]
36. Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Tanaka T; Benedek GB Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941 [TBL] [Abstract][Full Text] [Related]
37. Crystallin mRNA concentrations and distribution in lens of normal and galactosemic rats. Implications in development of sugar cataracts. Wen Y; Shi ST; Unakar NJ; Bekhor I Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1638-47. PubMed ID: 1707863 [TBL] [Abstract][Full Text] [Related]
38. Distribution of taurine in the crystalline lens of vertebrate species and in cataractogenesis. Gupta K; Mathur RL Exp Eye Res; 1983 Oct; 37(4):379-84. PubMed ID: 6641821 [TBL] [Abstract][Full Text] [Related]
39. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
40. [The early biochemical changes of cataractous lenses of rats cultured in vitro]. Dong D; Lu A; Liu Y; Jia W; Hou W Zhonghua Yan Ke Za Zhi; 2000 Sep; 36(5):344-7, 21. PubMed ID: 11853625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]