These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15538876)

  • 1. Calculation of the aqueous solvation energy and entropy, as well as free energy, of simple polar solutes.
    Wan S; Stote RH; Karplus M
    J Chem Phys; 2004 Nov; 121(19):9539-48. PubMed ID: 15538876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating entropies from molecular dynamics simulations.
    Peter C; Oostenbrink C; van Dorp A; van Gunsteren WF
    J Chem Phys; 2004 Feb; 120(6):2652-61. PubMed ID: 15268408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculations of solute and solvent entropies from molecular dynamics simulations.
    Carlsson J; Aqvist J
    Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confusing cause and effect: energy-entropy compensation in the preferential solvation of a nonpolar solute in dimethyl sulfoxide/water mixtures.
    Ozal TA; van der Vegt NF
    J Phys Chem B; 2006 Jun; 110(24):12104-12. PubMed ID: 16800523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in thermodynamic quantities upon contact of two solutes in solvent under isochoric and isobaric conditions.
    Kinoshita M; Harano Y; Akiyama R
    J Chem Phys; 2006 Dec; 125(24):244504. PubMed ID: 17199352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum chemical approach to the free energy calculations in condensed systems: the QM/MM method combined with the theory of energy representation.
    Takahashi H; Matubayasi N; Nakahara M; Nitta T
    J Chem Phys; 2004 Sep; 121(9):3989-99. PubMed ID: 15332945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides.
    Cheluvaraja S; Meirovitch H
    J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy-energy decomposition from nonequilibrium work trajectories.
    Nummela J; Yassin F; Andricioaei I
    J Chem Phys; 2008 Jan; 128(2):024104. PubMed ID: 18205440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the performance of the coupled reference interaction site model-hyper-netted chain (RISM-HNC)/simulation method for free energy of solvation.
    Freedman H; Le L; Tuszynski JA; Truong TN
    J Phys Chem B; 2008 Feb; 112(8):2340-8. PubMed ID: 18251537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the hydration free energy difference between pyridine and its methyl-substituted derivatives by computer simulation methods.
    Partay L; Jedlovszky P; Jancsó G
    J Phys Chem B; 2005 Apr; 109(16):8097-102. PubMed ID: 16851946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation.
    Meirovitch H
    Curr Opin Struct Biol; 2007 Apr; 17(2):181-6. PubMed ID: 17395451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of free-energy differences and potentials of mean force by a multi-energy gap method.
    Zhou HX
    J Chem Phys; 2008 Mar; 128(11):114104. PubMed ID: 18361551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute free energy calculations by thermodynamic integration in four spatial dimensions.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2005 Jul; 123(3):34104. PubMed ID: 16080727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration free energy difference of acetone, acetamide, and urea.
    Jedlovszky P; Idrissi A
    J Chem Phys; 2008 Oct; 129(16):164501. PubMed ID: 19045278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration.
    Ben-Amotz D; Underwood R
    Acc Chem Res; 2008 Aug; 41(8):957-67. PubMed ID: 18710198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of solvation and finite temperatures on theWittig reaction: A theoretical study.
    Seth M; Senn HM; Ziegler T
    J Phys Chem A; 2005 Jun; 109(23):5136-43. PubMed ID: 16833868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory of solvation and its relation to implicit solvent models.
    Ramirez R; Borgis D
    J Phys Chem B; 2005 Apr; 109(14):6754-63. PubMed ID: 16851760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.