BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15538971)

  • 1. Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation.
    Pickard B; Damjanovski S
    Cell Res; 2004 Oct; 14(5):389-99. PubMed ID: 15538971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP).
    Hammoud L; Walsh LA; Damjanovski S
    Biochem Cell Biol; 2006 Apr; 84(2):167-77. PubMed ID: 16609697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of fugu TIMP-3 and -4 genes in adult tissues and embryos.
    Tsukamoto H; Yokoyama Y; Suzuki T; Mizuta S; Yoshinaka R
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jul; 144(3):395-403. PubMed ID: 16753323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a Xenopus gene (XMLP) encoding a MARCKS-like protein.
    Zhao H; Cao Y; Grunz H
    Int J Dev Biol; 2001 Oct; 45(7):817-26. PubMed ID: 11732841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid metabolizing factor xCyp26c is specifically expressed in neuroectoderm and regulates anterior neural patterning in Xenopus laevis.
    Tanibe M; Michiue T; Yukita A; Danno H; Ikuzawa M; Ishiura S; Asashima M
    Int J Dev Biol; 2008; 52(7):893-901. PubMed ID: 18956319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of Xenopus OMP25.
    Inui M; Asashima M
    Dev Growth Differ; 2004 Oct; 46(5):405-12. PubMed ID: 15606486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of CAP2 during early Xenopus embryogenesis.
    Wolanski M; Khosrowshahian F; Jerant L; Jap IS; Brockman J; Crawford MJ
    Int J Dev Biol; 2009; 53(7):1063-7. PubMed ID: 19598124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis.
    Eroshkin FM; Ermakova GV; Bayramov AV; Zaraisky AG
    Gene Expr Patterns; 2006 Jan; 6(2):180-6. PubMed ID: 16168719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm.
    Bellipanni G; Varga M; Maegawa S; Imai Y; Kelly C; Myers AP; Chu F; Talbot WS; Weinberg ES
    Development; 2006 Apr; 133(7):1299-309. PubMed ID: 16510506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of Xenopus laevis homologs of mammalian TRAF6 and its binding protein TIFA.
    Inoue J; Yagi S; Ishikawa K; Azuma S; Ikawa S; Semba K
    Gene; 2005 Sep; 358():53-9. PubMed ID: 16023795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.
    Suzawa K; Yukita A; Hayata T; Goto T; Danno H; Michiue T; Cho KW; Asashima M
    Int J Dev Biol; 2007; 51(3):183-90. PubMed ID: 17486538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis.
    Luque ME; Crespo PM; Mónaco ME; Aybar MJ; Daniotti JL; Sánchez SS
    Dev Dyn; 2008 Jan; 237(1):112-23. PubMed ID: 18095347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein.
    Ruan XZ; Yang HS; Yao SH; Ma FX; Zhao XY; Yan F; Wang CT; Lai ST; Deng HX; Wei YQ
    Mol Reprod Dev; 2007 Dec; 74(12):1505-13. PubMed ID: 17440976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells.
    Offner N; Duval N; Jamrich M; Durand B
    Development; 2005 Apr; 132(8):1807-18. PubMed ID: 15772136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel Xenopus SH3 domain binding protein 5 like (xSH3BP5L) gene.
    Hu ZG; Chen Y; Zhou Q; Lv XY; Zhang Z; Wang YD; Xiao Y; Guo H; Liu YH; Tan RZ; Li QW; Bian GH; Wei YQ
    Biochem Biophys Res Commun; 2008 Jan; 365(2):214-20. PubMed ID: 17981148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development.
    Kuerner KM; Steinbeisser H
    Dev Dyn; 2006 Oct; 235(10):2861-7. PubMed ID: 16894599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of RhoB in the developing Xenopus laevis embryo.
    Vignal E; de Santa Barbara P; Guémar L; Donnay JM; Fort P; Faure S
    Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble membrane-type 3 matrix metalloprioteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development.
    Walsh LA; Cooper CA; Damjanovski S
    Int J Dev Biol; 2007; 51(5):389-95. PubMed ID: 17616928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XRASGRP2 expression during early development of Xenopus embryos.
    Nagamine K; Matsuda A; Asashima M; Hori T
    Biochem Biophys Res Commun; 2008 Aug; 372(4):886-91. PubMed ID: 18539143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.