BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

861 related articles for article (PubMed ID: 15539473)

  • 1. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana.
    Jakoby M; Wang HY; Reidt W; Weisshaar B; Bauer P
    FEBS Lett; 2004 Nov; 577(3):528-34. PubMed ID: 15556641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis cpFtsY mutants exhibit pleiotropic defects including an inability to increase iron deficiency-inducible root Fe(III) chelate reductase activity.
    Durrett TP; Connolly EL; Rogers EE
    Plant J; 2006 Aug; 47(3):467-79. PubMed ID: 16813577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.
    Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.
    Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC
    Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.
    Séguéla M; Briat JF; Vert G; Curie C
    Plant J; 2008 Jul; 55(2):289-300. PubMed ID: 18397377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S; Meier B; von Wirén N; Peiter E
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Fe deficiency gene expression by jasmonate.
    Maurer F; Müller S; Bauer P
    Plant Physiol Biochem; 2011 May; 49(5):530-6. PubMed ID: 21334215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.
    Wang N; Cui Y; Liu Y; Fan H; Du J; Huang Z; Yuan Y; Wu H; Ling HQ
    Mol Plant; 2013 Mar; 6(2):503-13. PubMed ID: 22983953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.
    Chen WW; Yang JL; Qin C; Jin CW; Mo JH; Ye T; Zheng SJ
    Plant Physiol; 2010 Oct; 154(2):810-9. PubMed ID: 20699398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis.
    Cui Y; Chen CL; Cui M; Zhou WJ; Wu HL; Ling HQ
    Mol Plant; 2018 Sep; 11(9):1166-1183. PubMed ID: 29960107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants.
    Lin XY; Ye YQ; Fan SK; Jin CW; Zheng SJ
    Plant Physiol; 2016 Feb; 170(2):907-20. PubMed ID: 26644507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.
    Vert GA; Briat JF; Curie C
    Plant Physiol; 2003 Jun; 132(2):796-804. PubMed ID: 12805609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.