These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15540204)
21. Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. von Neuhoff N; Oumeraci T; Wolf T; Kollewe K; Bewerunge P; Neumann B; Brors B; Bufler J; Wurster U; Schlegelberger B; Dengler R; Zapatka M; Petri S PLoS One; 2012; 7(9):e44401. PubMed ID: 22970211 [TBL] [Abstract][Full Text] [Related]
22. Characterization of a digested protein complex with quantitative aspects: an approach based on accurate mass chromatographic analysis with Fourier transform-ion cyclotron resonance mass spectrometry. Nakamura T; Dohmae N; Takio K Proteomics; 2004 Sep; 4(9):2558-66. PubMed ID: 15352230 [TBL] [Abstract][Full Text] [Related]
23. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. Ranganathan S; Williams E; Ganchev P; Gopalakrishnan V; Lacomis D; Urbinelli L; Newhall K; Cudkowicz ME; Brown RH; Bowser R J Neurochem; 2005 Dec; 95(5):1461-71. PubMed ID: 16313519 [TBL] [Abstract][Full Text] [Related]
25. Rapid analysis of tryptically digested cerebrospinal fluid using capillary electrophoresis-electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry. Wetterhall M; Palmblad M; Håkansson P; Markides KE; Bergquist J J Proteome Res; 2002; 1(4):361-6. PubMed ID: 12645892 [TBL] [Abstract][Full Text] [Related]
26. Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Oeckl P; Weydt P; Thal DR; Weishaupt JH; Ludolph AC; Otto M Acta Neuropathol; 2020 Jan; 139(1):119-134. PubMed ID: 31701227 [TBL] [Abstract][Full Text] [Related]
27. The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). Rosenling T; Slim CL; Christin C; Coulier L; Shi S; Stoop MP; Bosman J; Suits F; Horvatovich PL; Stockhofe-Zurwieden N; Vreeken R; Hankemeier T; van Gool AJ; Luider TM; Bischoff R J Proteome Res; 2009 Dec; 8(12):5511-22. PubMed ID: 19845411 [TBL] [Abstract][Full Text] [Related]
28. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Wu SL; Jardine I; Hancock WS; Karger BL Rapid Commun Mass Spectrom; 2004; 18(19):2201-7. PubMed ID: 15384137 [TBL] [Abstract][Full Text] [Related]
29. Dynamic range expansion applied to mass spectrometry based on data-dependent selective ion ejection in capillary liquid chromatography fourier transform ion cyclotron resonance for enhanced proteome characterization. Belov ME; Anderson GA; Angell NH; Shen Y; Tolic N; Udseth HR; Smith RD Anal Chem; 2001 Nov; 73(21):5052-60. PubMed ID: 11721899 [TBL] [Abstract][Full Text] [Related]
30. Development of immunoprecipitation - two-dimensional liquid chromatography - mass spectrometry methodology as biomarker read-out to quantify phosphorylated tau in cerebrospinal fluid from Alzheimer disease patients. Bijttebier S; Theunis C; Jahouh F; Martins DR; Verhemeldonck M; Grauwen K; Dillen L; Mercken M J Chromatogr A; 2021 Aug; 1651():462299. PubMed ID: 34107398 [TBL] [Abstract][Full Text] [Related]
31. FTICR mass spectrometry for qualitative and quantitative bioanalyses. Page JS; Masselon CD; Smith RD Curr Opin Biotechnol; 2004 Feb; 15(1):3-11. PubMed ID: 15102459 [TBL] [Abstract][Full Text] [Related]
32. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
33. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. Pan S; Rush J; Peskind ER; Galasko D; Chung K; Quinn J; Jankovic J; Leverenz JB; Zabetian C; Pan C; Wang Y; Oh JH; Gao J; Zhang J; Montine T; Zhang J J Proteome Res; 2008 Feb; 7(2):720-30. PubMed ID: 18186601 [TBL] [Abstract][Full Text] [Related]
35. Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Bergquist J; Palmblad M; Wetterhall M; Håkansson P; Markides KE Mass Spectrom Rev; 2002; 21(1):2-15. PubMed ID: 12210611 [TBL] [Abstract][Full Text] [Related]
37. Identification of human liver diacetyl reductases by nano-liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. Tanaka Y; Sato I; Iwai C; Kosaka T; Ikeda T; Nakamura T Anal Biochem; 2001 Jun; 293(2):157-68. PubMed ID: 11399028 [TBL] [Abstract][Full Text] [Related]
38. Multicomponent internal recalibration of an LC-FTICR-MS analysis employing a partially characterized complex peptide mixture: systematic and random errors. Yanofsky CM; Bell AW; Lesimple S; Morales F; Lam TT; Blakney GT; Marshall AG; Carrillo B; Lekpor K; Boismenu D; Kearney RE Anal Chem; 2005 Nov; 77(22):7246-54. PubMed ID: 16285672 [TBL] [Abstract][Full Text] [Related]
39. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system. Wu SL; Amato H; Biringer R; Choudhary G; Shieh P; Hancock WS J Proteome Res; 2002; 1(5):459-65. PubMed ID: 12645918 [TBL] [Abstract][Full Text] [Related]
40. Data-dependent electron capture dissociation FT-ICR mass spectrometry for proteomic analyses. Cooper HJ; Akbarzadeh S; Heath JK; Zeller M J Proteome Res; 2005; 4(5):1538-44. PubMed ID: 16212404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]