These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15540438)

  • 1. Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays.
    Martínez-Corral M; Javidi B; Martínez-Cuenca R; Saavedra G
    Appl Opt; 2004 Nov; 43(31):5806-13. PubMed ID: 15540438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced depth of field integral imaging with sensor resolution constraints.
    Martínez-Cuenca R; Saavedra G; Martínez-Corral M; Javidi B
    Opt Express; 2004 Oct; 12(21):5237-42. PubMed ID: 19484082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the depth of field in hexagonal array integral imaging systems based on modulation transfer function and Strehl ratio.
    Karimzadeh A
    Appl Opt; 2016 Apr; 55(11):3045-50. PubMed ID: 27139873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis for integral imaging performance based on microscanning of a microlens array.
    Wang X; Hua H
    Opt Lett; 2008 Mar; 33(5):449-51. PubMed ID: 18311288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement method of integral imaging quality based on an aperture-tunable lens array.
    Zhang J; Wang X; Chen Y; Yu S; Zhang Q; Li Z
    Appl Opt; 2014 Sep; 53(25):5654-9. PubMed ID: 25321360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls.
    Long Y; Song Z; Pan M; Tao C; Hong R; Dai B; Zhang D
    Opt Express; 2021 Apr; 29(8):12763-12771. PubMed ID: 33985026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays.
    Zaiba S; Kouriba T; Ziane O; Stéphan O; Bosson J; Vitrant G; Baldeck PL
    Opt Express; 2012 Jul; 20(14):15516-21. PubMed ID: 22772246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes.
    Jang JS; Javidi B
    Opt Lett; 2003 Oct; 28(20):1924-6. PubMed ID: 14587777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations.
    Ye JS; Dong BZ; Gu BY; Liu ST
    Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution beam steering using microlens arrays.
    Akatay A; Ataman C; Urey H
    Opt Lett; 2006 Oct; 31(19):2861-3. PubMed ID: 16969403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional imaging system with both improved lateral resolution and depth of field considering non-uniform system parameters.
    Yun H; Llavador A; Saavedra G; Cho M
    Appl Opt; 2018 Nov; 57(31):9423-9431. PubMed ID: 30461988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance integral imaging 3D display using quarter-overlapped microlens arrays.
    Zhao NQ; Liu J; Zhao ZF
    Opt Lett; 2021 Sep; 46(17):4240-4243. PubMed ID: 34469984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method.
    Li TJ; Li S; Yuan Y; Liu YD; Xu CL; Shuai Y; Tan HP
    Opt Express; 2017 Apr; 25(7):8274-8287. PubMed ID: 28380942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging method based on the combination of microlens arrays and aperture arrays.
    Chen X; Song Y; Zhang W; Sulaman M; Zhao S; Guo B; Hao Q; Li L
    Appl Opt; 2018 Jul; 57(19):5392-5398. PubMed ID: 30117834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses.
    Manolache S; Aggoun A; McCormick M; Davies N; Kung SY
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1814-21. PubMed ID: 11488485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large Depth-of-Field Integral Microscopy by Use of a Liquid Lens.
    Llavador A; Scrofani G; Saavedra G; Martinez-Corral M
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect-Mimetic Imaging System Based on a Microlens Array Fabricated by a Patterned-Layer Integrating Soft Lithography Process.
    Seo M; Seo JM; Cho DD; Koo K
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29932163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.