These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15540808)

  • 61. Polarization properties of bent-type optical fibre probe for magneto-optical imaging.
    Ishibashi T; Yoshida T; Iijima A; Sato K; Mitsuoka Y; Nakajima K
    J Microsc; 1999; 194(Pt 2-3):374-7. PubMed ID: 11388270
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.
    Sarkar S; Zou J; Liu J; Xu C; An L; Zhai L
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1150-6. PubMed ID: 20423134
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets.
    Ok JG; Lee JY; Baac HW; Tawfick SH; Guo LJ; Hart AJ
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):874-81. PubMed ID: 24328263
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes.
    Fujimura T; Edamatsu K; Itoh T; Shimada R; Imada A; Koda T; Chiba N; Muramatsu H; Ataka T
    Opt Lett; 1997 Apr; 22(8):489-91. PubMed ID: 18183243
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment.
    Pint CL; Xu YQ; Moghazy S; Cherukuri T; Alvarez NT; Haroz EH; Mahzooni S; Doorn SK; Kono J; Pasquali M; Hauge RH
    ACS Nano; 2010 Feb; 4(2):1131-45. PubMed ID: 20092353
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Unravelling the coupling of surface plasmons in carbon nanotubes by near-field nanoscopy.
    Tian X; Chen R; Chen J
    Nanoscale; 2021 Aug; 13(29):12454-12459. PubMed ID: 34477610
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multi-walled carbon nanotube arrays for gas sensing applications.
    Rajaputra S; Mangu R; Clore P; Qian D; Andrews R; Singh VP
    Nanotechnology; 2008 Aug; 19(34):345502. PubMed ID: 21730649
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extreme Magneto-transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber.
    Bulmer JS; Lekawa-Raus A; Rickel DG; Balakirev FF; Koziol KK
    Sci Rep; 2017 Sep; 7(1):12193. PubMed ID: 28939817
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanoscale contacts between carbon nanotubes and metallic pads.
    Peng N; Li H; Zhang Q
    ACS Nano; 2009 Dec; 3(12):4117-21. PubMed ID: 19894695
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Near field behavior of SnO(2) particle-layer deposited on standard optical fiber by electrostatic spray pyrolysis method.
    Cusano A; Pilla P; Consales M; Pisco M; Cutolo A; Buosciolo A; Giordano M
    Opt Express; 2007 Apr; 15(8):5136-46. PubMed ID: 19532764
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of a scanning near-field optical microscope architecture to study fluorescence and energy transfer near a metal.
    Pagnot T; Barchiesi D; Van Labeke D; Pieralli C
    Opt Lett; 1997 Jan; 22(2):120-2. PubMed ID: 18183122
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy.
    Yamaguchi M; Sasaki Y; Sasaki H; Konada T; Horikawa Y; Ebina A; Umezawa T; Horiguchi T
    J Microsc; 1999; 194(Pt 2-3):552-7. PubMed ID: 11388305
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polarization and detection angle dependence of interferometric imaging with scattering near-field scanning optical microscope.
    Liu C; Park SH
    Opt Express; 2004 Dec; 12(25):6341-9. PubMed ID: 19488281
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polarization effects in apertureless scanning near-field optical microscopy: an experimental study.
    Aigouy L; Lahrech A; GrĂ£sillon S; Cory H; Boccara AC; Rivoal JC
    Opt Lett; 1999 Feb; 24(4):187-9. PubMed ID: 18071449
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of fiber probes of scanning near-field optical microscope by field emission microscopy.
    Sekatskii SK; Mironov BN; Lapshin DA; Dietler G; Letokhov VS
    Ultramicroscopy; 2001 Oct; 89(1-3):83-7. PubMed ID: 11770756
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optically Induced Field-Emission Source Based on Aligned Vertical Carbon Nanotube Arrays.
    Li M; Wang Q; Xu J; Zhang J; Qi Z; Zhang X
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361196
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reflection mode scanning near-field optical microscopy analyses of integrated devices.
    Cramer RM; Chin R; Balk LJ
    J Microsc; 1999; 194(Pt 2-3):542-4. PubMed ID: 11388303
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy.
    Barkelid M; Steele GA; Zwiller V
    Nano Lett; 2012 Nov; 12(11):5649-53. PubMed ID: 23066947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.