These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 15541189)
21. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. Shrestha A; Sundaraj S; Culbreath AK; Riley DG; Abney MR; Srinivasan R Environ Entomol; 2015 Feb; 44(1):136-43. PubMed ID: 26308816 [TBL] [Abstract][Full Text] [Related]
22. Diversity of Thrips Species and Vectors of Tomato Spotted Wilt Virus in Tomato Production Systems in Kenya. Macharia I; Backhouse D; Skilton R; Ateka E; Wu SB; Njahira M; Maina S; Harvey J J Econ Entomol; 2015 Feb; 108(1):20-8. PubMed ID: 26470099 [TBL] [Abstract][Full Text] [Related]
23. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. Rajarapu SP; Ben-Mahmoud S; Benoit JB; Ullman DE; Whitfield AE; Rotenberg D Insect Biochem Mol Biol; 2022 Oct; 149():103843. PubMed ID: 36113709 [TBL] [Abstract][Full Text] [Related]
25. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Whitfield AE; Kumar NK; Rotenberg D; Ullman DE; Wyman EA; Zietlow C; Willis DK; German TL Phytopathology; 2008 Jan; 98(1):45-50. PubMed ID: 18943237 [TBL] [Abstract][Full Text] [Related]
26. Acquisition of Tomato spotted wilt virus by Adults of Two Thrips Species. de Assis Filho FM; Deom CM; Sherwood JL Phytopathology; 2004 Apr; 94(4):333-6. PubMed ID: 18944108 [TBL] [Abstract][Full Text] [Related]
27. Variation in Tomato spotted wilt virus titer in Frankliniella occidentalis and its association with frequency of transmission. Rotenberg D; Krishna Kumar NK; Ullman DE; Montero-AstĂșa M; Willis DK; German TL; Whitfield AE Phytopathology; 2009 Apr; 99(4):404-10. PubMed ID: 19271982 [TBL] [Abstract][Full Text] [Related]
28. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection. Han J; Rotenberg D BMC Genomics; 2021 Nov; 22(1):810. PubMed ID: 34758725 [TBL] [Abstract][Full Text] [Related]
29. Bell and banana pepper exhibit mature-plant resistance to tomato spotted wilt Tospovirus transmitted by Frankliniella fusca (Thysanoptera: Thripidae). Beaudoin AL; Kahn ND; Kennedy GG J Econ Entomol; 2009 Feb; 102(1):30-5. PubMed ID: 19253614 [TBL] [Abstract][Full Text] [Related]
30. First Report of Vidalia Onion (Allium cepa) Naturally Infected with Tomato spotted wilt virus and Iris yellow spot virus (Family Bunyaviridae, Genus Tospovirus) in Georgia. Mullis SW; Langston DB; Gitaitis RD; Sherwood JL; Csinos AC; Riley DG; Sparks AN; Torrance RL; Cook MJ Plant Dis; 2004 Nov; 88(11):1285. PubMed ID: 30795333 [TBL] [Abstract][Full Text] [Related]
31. The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). Boonham N; Smith P; Walsh K; Tame J; Morris J; Spence N; Bennison J; Barker I J Virol Methods; 2002 Mar; 101(1-2):37-48. PubMed ID: 11849682 [TBL] [Abstract][Full Text] [Related]
32. Epidemiology of tomato spotted wilt virus in Chrysanthemum morifolium in South Korea and its management using a soil-dwelling predatory mite (Stratiolaelaps scimitus) and essential oils. Yoon JB; Choi SK; Cho IS; Kwon TR; Yang CY; Seo MH; Yoon JY Virus Res; 2020 Nov; 289():198128. PubMed ID: 32846194 [TBL] [Abstract][Full Text] [Related]
33. HMG-like DSP1 is a damage signal to mediate the western flower thrips, Frankliniella occidentalis, immune responses to tomato spotted wilt virus infection. Kim CY; Ahmed S; Stanley D; Kim Y Dev Comp Immunol; 2023 Jul; 144():104706. PubMed ID: 37019348 [TBL] [Abstract][Full Text] [Related]
34. Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. Nagata T; Inoue-Nagata AK; van Lent J; Goldbach R; Peters D J Gen Virol; 2002 Mar; 83(Pt 3):663-671. PubMed ID: 11842261 [TBL] [Abstract][Full Text] [Related]
35. Impact of early-season thrips management on reducing the risks of spotted wilt virus and suppressing aphid populations in Flue-cured tobacco. McPherson RM; Stephenson MG; Lahue SS; Mullis SW J Econ Entomol; 2005 Feb; 98(1):129-34. PubMed ID: 15765674 [TBL] [Abstract][Full Text] [Related]
36. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection. Badillo-Vargas IE; Rotenberg D; Schneweis DJ; Hiromasa Y; Tomich JM; Whitfield AE J Virol; 2012 Aug; 86(16):8793-809. PubMed ID: 22696645 [TBL] [Abstract][Full Text] [Related]
37. The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. Margaria P; Bosco L; Vallino M; Ciuffo M; Mautino GC; Tavella L; Turina M J Virol; 2014 May; 88(10):5788-802. PubMed ID: 24623427 [TBL] [Abstract][Full Text] [Related]
38. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Montero-AstĂșa M; Ullman DE; Whitfield AE Virology; 2016 Jun; 493():39-51. PubMed ID: 26999025 [TBL] [Abstract][Full Text] [Related]
39. First Report of Frankliniella fusca as a Vector of Impatiens necrotic spot tospovirus. Naidu RA; Deom CM; Sherwood JL Plant Dis; 2001 Nov; 85(11):1211. PubMed ID: 30823188 [TBL] [Abstract][Full Text] [Related]
40. Effect of watermelon silver mottle virus on the life history and feeding preference of Thrips palmi. Chen WT; Tseng CH; Tsai CW PLoS One; 2014; 9(7):e102021. PubMed ID: 25010157 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]