BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 1554158)

  • 21. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study.
    Vikram NR; Senthil Kumar KS; Nagachandran KS; Hashir YM
    Indian J Dent Res; 2012; 23(2):213-20. PubMed ID: 22945712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis.
    Liang W; Rong Q; Lin J; Xu B
    Am J Orthod Dentofacial Orthop; 2009 Mar; 135(3):316-22. PubMed ID: 19268829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On optimum orthodontic force theory as applied to canine retraction.
    Nikolai RJ
    Am J Orthod; 1975 Sep; 68(3):290-302. PubMed ID: 1057850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of root and bone morphology on the stress distribution in the periodontal ligament.
    Choy K; Pae EK; Park Y; Kim KH; Burstone CJ
    Am J Orthod Dentofacial Orthop; 2000 Jan; 117(1):98-105. PubMed ID: 10629526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Three-dimensional finite element stress analysis on the periodontal tissue of maxillary canine].
    Qian Y; Fan Y; Jiang W; Cheng B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):196-9. PubMed ID: 15143538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.
    Papageorgiou SN; Keilig L; Hasan I; Jäger A; Bourauel C
    Eur J Orthod; 2016 Jun; 38(3):300-7. PubMed ID: 26174769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis.
    Wu JL; Liu YF; Peng W; Dong HY; Zhang JX
    J Zhejiang Univ Sci B; 2018 Jul; 19(7):535-546. PubMed ID: 29971992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption.
    Viecilli RF; Katona TR; Chen J; Hartsfield JK; Roberts WE
    Am J Orthod Dentofacial Orthop; 2008 Jun; 133(6):791.e11-26. PubMed ID: 18538239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress of tooth and PDL structure created by bite force.
    Kaewsuriyathumrong C; Soma K
    Bull Tokyo Med Dent Univ; 1993 Dec; 40(4):217-32. PubMed ID: 8275547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent mechanical behaviour of the periodontal ligament.
    van Driel WD; van Leeuwen EJ; Von den Hoff JW; Maltha JC; Kuijpers-Jagtman AM
    Proc Inst Mech Eng H; 2000; 214(5):497-504. PubMed ID: 11109857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method.
    Kim T; Suh J; Kim N; Lee M
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):639-47. PubMed ID: 20451783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire.
    Chang YI; Shin SJ; Baek SH
    Eur J Orthod; 2004 Jun; 26(3):339-45. PubMed ID: 15222721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initial effect of multiloop edgewise archwire on the mandibular dentition in Class III malocclusion subjects. A three-dimensional finite element study.
    Baek SH; Shin SJ; Ahn SJ; Chang YI
    Eur J Orthod; 2008 Feb; 30(1):10-5. PubMed ID: 18276927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics.
    Tominaga JY; Tanaka M; Koga Y; Gonzales C; Kobayashi M; Yoshida N
    Angle Orthod; 2009 Nov; 79(6):1102-7. PubMed ID: 19852600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress analysis of bone modeling response to rat molar orthodontics.
    Katona TR; Paydar NH; Akay HU; Roberts WE
    J Biomech; 1995 Jan; 28(1):27-38. PubMed ID: 7852439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: a 3-dimensional finite element analysis.
    Vásquez M; Calao E; Becerra F; Ossa J; Enríquez C; Fresneda E
    Angle Orthod; 2001 Aug; 71(4):247-56. PubMed ID: 11510633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of orthodontic retention on the mechanical properties of the periodontal ligament in the rat maxillary first molar.
    Hong RK; Yamane A; Kuwahara Y; Chiba M
    J Dent Res; 1992 Jul; 71(7):1350-4. PubMed ID: 1629449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale analysis of stress distribution in teeth under applied forces.
    Miura J; Maeda Y; Nakai H; Zako M
    Dent Mater; 2009 Jan; 25(1):67-73. PubMed ID: 18603289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.
    Liao Z; Chen J; Li W; Darendeliler MA; Swain M; Li Q
    Arch Oral Biol; 2016 Jun; 66():98-107. PubMed ID: 26943815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.