These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15542128)

  • 1. The potential of tissue engineering in orthopedics.
    Landis WJ; Jacquet R; Hillyer J; Zhang J; Siperko L; Chubinskaya S; Asamura S; Isogai N
    Orthop Clin North Am; 2005 Jan; 36(1):97-104. PubMed ID: 15542128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and assessment of a tissue-engineered model of human phalanges and a small joint.
    Landis WJ; Jacquet R; Hillyer J; Lowder E; Yanke A; Siperko L; Asamura S; Kusuhara H; Enjo M; Chubinskaya S; Potter K; Isogai N
    Orthod Craniofac Res; 2005 Nov; 8(4):303-12. PubMed ID: 16238611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Tissue engineering of the small joint].
    Isogai N
    Clin Calcium; 2002 Feb; 12(2):212-6. PubMed ID: 15775297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes.
    Kusuhara H; Isogai N; Enjo M; Otani H; Ikada Y; Jacquet R; Lowder E; Landis WJ
    Wound Repair Regen; 2009; 17(1):136-46. PubMed ID: 19152661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of phalanges and small joints by tissue-engineering.
    Isogai N; Landis W; Kim TH; Gerstenfeld LC; Upton J; Vacanti JP
    J Bone Joint Surg Am; 1999 Mar; 81(3):306-16. PubMed ID: 10199268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support.
    Ruszymah BH; Chua K; Latif MA; Hussein FN; Saim AB
    Int J Pediatr Otorhinolaryngol; 2005 Nov; 69(11):1489-95. PubMed ID: 15941595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects.
    Endres M; Neumann K; Schröder SE; Vetterlein S; Morawietz L; Ringe J; Sittinger M; Kaps C
    Tissue Cell; 2007 Oct; 39(5):293-301. PubMed ID: 17688898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage.
    Kang SW; Yoo SP; Kim BS
    Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the cellular origin of a tissue-engineered human phalanx model by in situ hybridization.
    Chubinskaya S; Jacquet R; Isogai N; Asamura S; Landis WJ
    Tissue Eng; 2004; 10(7-8):1204-13. PubMed ID: 15363176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering.
    Kryger GS; Chong AK; Costa M; Pham H; Bates SJ; Chang J
    J Hand Surg Am; 2007; 32(5):597-605. PubMed ID: 17481995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of oligolactone-based scaffolds for bone tissue engineering.
    Vogt S; Berger S; Wilke I; Larcher Y; Weisser J; Schnabelrauch M
    Biomed Mater Eng; 2005; 15(1-2):73-85. PubMed ID: 15623932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering cartilage tissues with the shape of human nasal alar by using chondrocyte macroaggregate--Experiment study in rabbit model.
    Wu W; Chen F; Feng X; Liu Y; Mao T
    J Biotechnol; 2007 May; 130(1):75-84. PubMed ID: 17434638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.