These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15542695)

  • 81. Gene expression in human alcoholism: microarray analysis of frontal cortex.
    Lewohl JM; Wang L; Miles MF; Zhang L; Dodd PR; Harris RA
    Alcohol Clin Exp Res; 2000 Dec; 24(12):1873-82. PubMed ID: 11141048
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Proteomics Reveals Profound Metabolic Changes in the Alcohol Use Disorder Brain.
    Enculescu C; Kerr ED; Yeo KYB; Schenk G; Fortes MRS; Schulz BL
    ACS Chem Neurosci; 2019 May; 10(5):2364-2373. PubMed ID: 30807102
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration.
    Freeman WM; Vanguilder HD; Guidone E; Krystal JH; Grant KA; Vrana KE
    Int J Neuropsychopharmacol; 2011 Aug; 14(7):899-911. PubMed ID: 21303580
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Application of DNA microarrays to study human alcoholism.
    Lewohl JM; Dodd PR; Mayfield RD; Harris RA
    J Biomed Sci; 2001; 8(1):28-36. PubMed ID: 11173973
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Proteomic approaches for studying alcoholism and alcohol-induced organ damage.
    Hiller-Sturmhöfel S; Sobin J; Mayfield RD
    Alcohol Res Health; 2008; 31(1):36-48. PubMed ID: 23584750
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Alkaloid adducts in human brain: coexistence of 1-carboxylated and noncarboxylated isoquinolines and beta-carbolines in alcoholics and nonalcoholics.
    Ung-Chhun N; Cheng BY; Pronger DA; Serrano P; Chavez B; Fernandez Perez R; Morales J; Collins MA
    Prog Clin Biol Res; 1985; 183():125-36. PubMed ID: 4048180
    [No Abstract]   [Full Text] [Related]  

  • 87. The consequences of sample pooling in proteomics: an empirical study.
    Diz AP; Truebano M; Skibinski DOF
    Electrophoresis; 2009 Sep; 30(17):2967-2975. PubMed ID: 19676090
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.
    Sutherland GT; Sheedy D; Kril JJ
    Alcohol Clin Exp Res; 2014 Jan; 38(1):1-8. PubMed ID: 24033426
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Changes in the lungs and vascular plexuses of the brain in chronic alcoholic intoxication].
    Naumenko VG; Mitiaeva NA
    Sud Med Ekspert; 1984; 27(4):33-6. PubMed ID: 6515680
    [No Abstract]   [Full Text] [Related]  

  • 90. Alcoholics' children--living with a stacked biochemical deck.
    J Psychosoc Nurs Ment Health Serv; 1999 Jun; 37(6):8-9. PubMed ID: 10382147
    [No Abstract]   [Full Text] [Related]  

  • 91. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain.
    Etheridge N; Lewohl JM; Mayfield RD; Harris RA; Dodd PR
    Proteomics Clin Appl; 2009 Jun; 3(6):730-742. PubMed ID: 19924264
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The future of proteomics in the study of alcoholism.
    Kasinathan C; Vrana K; Beretta L; Thomas P; Gooch R; Worst T; Walker S; Xu A; Pierre P; Green H; Grant K; Manowitz P
    Alcohol Clin Exp Res; 2004 Feb; 28(2):228-32. PubMed ID: 15112930
    [TBL] [Abstract][Full Text] [Related]  

  • 93. [Comparative microscopy studies of the brain of alcoholics and controls].
    Schuck M; Spann W
    Beitr Gerichtl Med; 1983; 41():49-52. PubMed ID: 6639626
    [No Abstract]   [Full Text] [Related]  

  • 94. The role of proteomics in investigating psychiatric disorders.
    Pennington K; Cotter D; Dunn MJ
    Br J Psychiatry; 2005 Jul; 187():4-6. PubMed ID: 15994564
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Brain water in chronic alcoholics: a necropsy study.
    Harper CG; Daly J; Kril J
    Lancet; 1985 Aug; 2(8450):327. PubMed ID: 2862485
    [No Abstract]   [Full Text] [Related]  

  • 96. Neuropathology of chronic alcoholism.
    Laas R; Hagel C
    Clin Neuropathol; 2000; 19(5):252-3. PubMed ID: 11048757
    [No Abstract]   [Full Text] [Related]  

  • 97. Differential regulation of G protein-coupled receptor-associated proteins in the caudate and the putamen of cynomolgus macaques following chronic ethanol drinking.
    Neel AI; Wang Y; Sun H; Liontis KE; McCormack MC; Mayer JC; Cervera Juanes RP; Davenport AT; Grant KA; Daunais JD; Chen R
    J Neurochem; 2024 Sep; 168(9):2722-2735. PubMed ID: 38783749
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Assessment of Extracellular Cytokines in the Hippocampus of the Awake Behaving Rat Using Large-Molecule Microdialysis Combined with Multiplex Arrays After Acute and Chronic Ethanol Exposure.
    Gano A; Vore AS; Sammakia MN; Deak T
    Alcohol Clin Exp Res; 2019 Apr; 43(4):640-654. PubMed ID: 30667526
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Loss of α- and β-Tubulin Proteins Are a Pathological Hallmark of Chronic Alcohol Consumption and Natural Brain Ageing.
    Labisso WL; Raulin AC; Nwidu LL; Kocon A; Wayne D; Erdozain AM; Morentin B; Schwendener D; Allen G; Enticott J; Gerdes HK; Johnson L; Grzeskowiak J; Drizou F; Tarbox R; Osna NA; Kharbanda KK; Callado LF; Carter WG
    Brain Sci; 2018 Sep; 8(9):. PubMed ID: 30208635
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.
    Sutherland GT; Sheedy D; Stevens J; McCrossin T; Smith CC; van Roijen M; Kril JJ
    Alcohol; 2016 May; 52():33-39. PubMed ID: 27139235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.