BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15542712)

  • 21. Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine.
    Frey K; Kilbourn M; Robinson T
    Eur J Pharmacol; 1997 Sep; 334(2-3):273-9. PubMed ID: 9369358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relation between methamphetamine-induced monoamine depletions in the striatum and sequential motor learning.
    Daberkow DP; Kesner RP; Keefe KA
    Pharmacol Biochem Behav; 2005 May; 81(1):198-204. PubMed ID: 15894079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methamphetamine rapidly decreases mouse vesicular dopamine uptake: role of hyperthermia and dopamine D2 receptors.
    Ugarte YV; Rau KS; Riddle EL; Hanson GR; Fleckenstein AE
    Eur J Pharmacol; 2003 Jul; 472(3):165-71. PubMed ID: 12871750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex.
    Simões PF; Silva AP; Pereira FC; Marques E; Milhazes N; Borges F; Ribeiro CF; Macedo TR
    Ann N Y Acad Sci; 2008 Oct; 1139():232-41. PubMed ID: 18991869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of striatal preproenkephalin mRNA levels in MPTP-lesioned mice treated with estradiol.
    D'Astous M; Morissette M; Callier S; Di Paolo T
    J Neurosci Res; 2005 Apr; 80(1):138-44. PubMed ID: 15723346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methamphetamine-induced alterations in monoamine transport: implications for neurotoxicity, neuroprotection and treatment.
    Volz TJ; Fleckenstein AE; Hanson GR
    Addiction; 2007 Apr; 102 Suppl 1():44-8. PubMed ID: 17493052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2.
    Riddle EL; Hanson GR; Fleckenstein AE
    Eur J Pharmacol; 2007 Sep; 571(1):25-8. PubMed ID: 17618619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of scopolamine on in vivo binding of dopamine transporter and vesicular monoamine transporter radioligands in rat brain.
    Kilbourn MR; Kemmerer ES; Desmond TJ; Sherman PS; Frey KA
    Exp Neurol; 2004 Aug; 188(2):387-90. PubMed ID: 15246838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method development and validation of an in vitro model of the effects of methylphenidate on membrane-associated synaptic vesicles.
    Volz TJ; Farnsworth SJ; Hanson GR; Fleckenstein AE
    J Neurosci Methods; 2009 Feb; 177(1):177-82. PubMed ID: 18992277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of psychostimulants on vesicular monoamine transporter function.
    Fleckenstein AE; Hanson GR
    Eur J Pharmacol; 2003 Oct; 479(1-3):283-9. PubMed ID: 14612158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Psychostimulants and monoamine transporters: upsetting the balance.
    Elliott JM; Beveridge TJ
    Curr Opin Pharmacol; 2005 Feb; 5(1):94-100. PubMed ID: 15661632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production.
    Sajadi A; Bauer M; Thöny B; Aebischer P
    J Neurochem; 2005 Jun; 93(6):1482-6. PubMed ID: 15935064
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinase A affects trafficking of the vesicular monoamine transporters in PC12 cells.
    Yao J; Erickson JD; Hersh LB
    Traffic; 2004 Dec; 5(12):1006-16. PubMed ID: 15522101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic analysis of developmental changes in vesicular monoamine transporter-2 function.
    Volz TJ; Hanson GR; Fleckenstein AE
    Synapse; 2006 Nov; 60(6):474-7. PubMed ID: 16897727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.
    Fumagalli F; Gainetdinov RR; Wang YM; Valenzano KJ; Miller GW; Caron MG
    J Neurosci; 1999 Apr; 19(7):2424-31. PubMed ID: 10087057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of organic cation transporter-3 in methamphetamine disposition and its behavioral response in rats.
    Nakayama H; Kitaichi K; Ito Y; Hashimoto K; Takagi K; Yokoi T; Takagi K; Ozaki N; Yamamoto T; Hasegawa T
    Brain Res; 2007 Dec; 1184():260-9. PubMed ID: 17988657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism.
    Faherty CJ; Raviie Shepherd K; Herasimtschuk A; Smeyne RJ
    Brain Res Mol Brain Res; 2005 Mar; 134(1):170-9. PubMed ID: 15790541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder.
    Wilens TE
    J Clin Psychopharmacol; 2008 Jun; 28(3 Suppl 2):S46-53. PubMed ID: 18480677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profile of genes showing increased expression following dopamine and methamphetamine exposure in an immortalized neuronal cell line.
    Cai NS; McCoy MT; Cadet JL
    Restor Neurol Neurosci; 2001; 18(2-3):57-65. PubMed ID: 11847428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats.
    Zhang X; Dong F; Mayer GE; Bruch DC; Ren J; Culver B
    Neuroscience; 2007 Dec; 150(4):950-8. PubMed ID: 17988800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.