BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15542738)

  • 1. A possible genetic mechanism underlying individual and interstrain differences in opioid actions: focus on the mu opioid receptor gene.
    Han W; Ide S; Sora I; Yamamoto H; Ikeda K
    Ann N Y Acad Sci; 2004 Oct; 1025():370-5. PubMed ID: 15542738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Individual differences in analgesic effects of narcotics].
    Ide S; Kasai S; Ikeda K
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2008 Feb; 28(1):43-8. PubMed ID: 18411709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracisternal A-particle element in the 3' noncoding region of the mu-opioid receptor gene in CXBK mice: a new genetic mechanism underlying differences in opioid sensitivity.
    Han W; Kasai S; Hata H; Takahashi T; Takamatsu Y; Yamamoto H; Uhl GR; Sora I; Ikeda K
    Pharmacogenet Genomics; 2006 Jun; 16(6):451-60. PubMed ID: 16708053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of morphine-induced antinociception with variations in the 5' flanking and 3' untranslated regions of the mu opioid receptor gene in 10 inbred mouse strains.
    Shigeta Y; Kasai S; Han W; Hata H; Nishi A; Takamatsu Y; Hagino Y; Yamamoto H; Koide T; Shiroishi T; Kasai K; Tsunashima K; Kato N; Ikeda K
    Pharmacogenet Genomics; 2008 Nov; 18(11):927-36. PubMed ID: 18854775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the 3' untranslated region of the human mu-opioid receptor (MOR-1) mRNA.
    Ide S; Han W; Kasai S; Hata H; Sora I; Ikeda K
    Gene; 2005 Dec; 364():139-45. PubMed ID: 16122888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major species of mouse mu-opioid receptor mRNA and its promoter-dependent functional polyadenylation signal.
    Wu Q; Hwang CK; Yao S; Law PY; Loh HH; Wei LN
    Mol Pharmacol; 2005 Aug; 68(2):279-85. PubMed ID: 15879516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced peripheral analgesia using virally mediated gene transfer of the mu-opioid receptor in mice.
    Zhang G; Mohammad H; Peper BD; Raja S; Wilson SP; Sweitzer SM
    Anesthesiology; 2008 Feb; 108(2):305-13. PubMed ID: 18212576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are mu-opioid receptor polymorphisms important for clinical opioid therapy?
    Lötsch J; Geisslinger G
    Trends Mol Med; 2005 Feb; 11(2):82-9. PubMed ID: 15694871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How individual sensitivity to opiates can be predicted by gene analyses.
    Ikeda K; Ide S; Han W; Hayashida M; Uhl GR; Sora I
    Trends Pharmacol Sci; 2005 Jun; 26(6):311-7. PubMed ID: 15925706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous opioid agonist treatment dose-dependently regulates mu-opioid receptors and dynamin-2 in mouse spinal cord.
    Zhang Q; Purohit V; Yoburn BC
    Synapse; 2005 Jun; 56(3):123-8. PubMed ID: 15765525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional significance of polymorphisms in the mu-opioid receptor gene (Oprm) promoter of C57BL/6 and DBA/2 mice.
    Doyle GA; Sheng XR; Schwebel CL; Ferraro TN; Berrettini WH; Buono RJ
    Neurosci Res; 2006 Jul; 55(3):244-54. PubMed ID: 16644048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress responsivity, addiction, and a functional variant of the human mu-opioid receptor gene.
    Kreek MJ; LaForge KS
    Mol Interv; 2007 Apr; 7(2):74-8. PubMed ID: 17468387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine inhibits herpetic allodynia through mu-opioid receptors induced in Abeta-fiber neurons.
    Sasaki A; Nakashima Y; Takasaki I; Andoh T; Shiraki K; Kuraishi Y
    Neuroreport; 2008 Jun; 19(9):975-9. PubMed ID: 18521004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell receptor/CD28-mediated activation of human T lymphocytes induces expression of functional mu-opioid receptors.
    Börner C; Kraus J; Bedini A; Schraven B; Höllt V
    Mol Pharmacol; 2008 Aug; 74(2):496-504. PubMed ID: 18463202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [How can we cope with wide individual variations in pain intensity and opioid requirements after surgery?].
    Hayashida M; Maruyama K
    Masui; 2009 Sep; 58(9):1086-92. PubMed ID: 19764430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes.
    Korostynski M; Kaminska-Chowaniec D; Piechota M; Przewlocki R
    BMC Genomics; 2006 Jun; 7():146. PubMed ID: 16772024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased firing frequency of midbrain dopamine neurons in mice lacking mu opioid receptors.
    Mathon DS; Ramakers GM; Pintar JE; Marinelli M
    Eur J Neurosci; 2005 May; 21(10):2883-6. PubMed ID: 15926936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mu opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses.
    Uhl GR; Sora I; Wang Z
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7752-5. PubMed ID: 10393893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of mu-opioid receptor gene in CXBK and B6 mice by Sp1.
    Lee PW; Wu S; Lee YM
    Mol Pharmacol; 2004 Dec; 66(6):1580-4. PubMed ID: 15562256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mu-opioid receptors are involved in the tolerance to nicotine antinociception.
    Galeote L; Kieffer BL; Maldonado R; Berrendero F
    J Neurochem; 2006 Apr; 97(2):416-23. PubMed ID: 16539669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.