BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 15543158)

  • 1. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.
    Lee C; Lee SM; Mukhopadhyay P; Kim SJ; Lee SC; Ahn WS; Yu MH; Storz G; Ryu SE
    Nat Struct Mol Biol; 2004 Dec; 11(12):1179-85. PubMed ID: 15543158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide.
    Kóna J; Brinck T
    Org Biomol Chem; 2006 Sep; 4(18):3468-78. PubMed ID: 17036142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo oxidation-reduction kinetics of OxyR, the transcriptional activator for an oxidative stress-inducible regulon in Escherichia coli.
    Tao K
    FEBS Lett; 1999 Aug; 457(1):90-2. PubMed ID: 10486570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the redox switch in the OxyR transcription factor.
    Choi H; Kim S; Mukhopadhyay P; Cho S; Woo J; Storz G; Ryu SE
    Cell; 2001 Apr; 105(1):103-13. PubMed ID: 11301006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status.
    Aslund F; Zheng M; Beckwith J; Storz G
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6161-5. PubMed ID: 10339558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis to define an activating region on the redox-sensitive transcriptional regulator OxyR.
    Wang X; Mukhopadhyay P; Wood MJ; Outten FW; Opdyke JA; Storz G
    J Bacteriol; 2006 Dec; 188(24):8335-42. PubMed ID: 17012382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins.
    Yeo WS; Lee JH; Lee KC; Roe JH
    Mol Microbiol; 2006 Jul; 61(1):206-18. PubMed ID: 16824106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the OxyR transcription factor by reversible disulfide bond formation.
    Zheng M; Aslund F; Storz G
    Science; 1998 Mar; 279(5357):1718-21. PubMed ID: 9497290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of a major intermediate in the oxidative folding of leech carboxypeptidase inhibitor: contribution of the fourth disulfide bond.
    Arolas JL; Popowicz GM; Bronsoms S; Aviles FX; Huber R; Holak TA; Ventura S
    J Mol Biol; 2005 Sep; 352(4):961-75. PubMed ID: 16126224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic folding pathway of a three-disulfide mutant of bovine pancreatic ribonuclease A missing the [40-95] disulfide bond.
    Xu X; Scheraga HA
    Biochemistry; 1998 May; 37(20):7561-71. PubMed ID: 9585571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal.
    Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S
    Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-operated genetic switches: the SoxR and OxyR transcription factors.
    Pomposiello PJ; Demple B
    Trends Biotechnol; 2001 Mar; 19(3):109-14. PubMed ID: 11179804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The location of an engineered inter-subunit disulfide bond in factor for inversion stimulation (FIS) affects the denaturation pathway and cooperativity.
    Meinhold D; Beach M; Shao Y; Osuna R; Colón W
    Biochemistry; 2006 Aug; 45(32):9767-77. PubMed ID: 16893178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human recombinant resistin protein displays a tendency to aggregate by forming intermolecular disulfide linkages.
    Aruna B; Ghosh S; Singh AK; Mande SC; Srinivas V; Chauhan R; Ehtesham NZ
    Biochemistry; 2003 Sep; 42(36):10554-9. PubMed ID: 12962478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of disulfide bond formation in Escherichia coli.
    Messens J; Collet JF
    Int J Biochem Cell Biol; 2006; 38(7):1050-62. PubMed ID: 16446111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural bases of the redox-dependent conformational switch in the serpin PAI-2.
    Lobov S; Wilczynska M; Bergström F; Johansson LB; Ny T
    J Mol Biol; 2004 Dec; 344(5):1359-68. PubMed ID: 15561148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding process of acylphosphatase from Escherichia coli is remarkably accelerated by the presence of a disulfide bond.
    Parrini C; Bemporad F; Baroncelli A; Gianni S; Travaglini-Allocatelli C; Kohn JE; Ramazzotti M; Chiti F; Taddei N
    J Mol Biol; 2008 Jun; 379(5):1107-18. PubMed ID: 18495159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observing conformational and activity changes of tet repressor in vivo.
    Tiebel B; Garke K; Hillen W
    Nat Struct Biol; 2000 Jun; 7(6):479-81. PubMed ID: 10881195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.