BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15543456)

  • 41. Shoulder joint kinetics and pathology in manual wheelchair users.
    Mercer JL; Boninger M; Koontz A; Ren D; Dyson-Hudson T; Cooper R
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):781-9. PubMed ID: 16808992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ascending curbs of progressively higher height increases forward trunk flexion along with upper extremity mechanical and muscular demands in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Hassan J; Desroches G; Zory R; Pradon D
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1434-45. PubMed ID: 23866992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scapular kinematic variability during wheelchair propulsion is associated with shoulder pain in wheelchair users.
    Briley SJ; Vegter RJK; Goosey-Tolfrey VL; Mason BS
    J Biomech; 2020 Dec; 113():110099. PubMed ID: 33142207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities.
    Holloway CS; Symonds A; Suzuki T; Gall A; Smitham P; Taylor S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2478-81. PubMed ID: 26736796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinematics of the elbow during wheelchair propulsion: a comparison of two wheelchairs and two stroking techniques.
    Rudins A; Laskowski ER; Growney ES; Cahalan TD; An KN
    Arch Phys Med Rehabil; 1997 Nov; 78(11):1204-10. PubMed ID: 9365350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury.
    Lalumiere M; Gagnon DH; Routhier F; Bouyer L; Desroches G
    J Appl Biomech; 2014 Aug; 30(4):574-80. PubMed ID: 24610281
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Force-velocity characteristics of upper limb extension during maximal wheelchair sprinting performed by healthy able-bodied females.
    Hintzy F; Tordi N; Predine E; Rouillon JD; Belli A
    J Sports Sci; 2003 Nov; 21(11):921-6. PubMed ID: 14626371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of wheelchair configurations on shoulder movements, push rim kinetics and upper limb kinematics while negotiating a speed bump.
    Gawande M; Wang P; Arnold G; Nasir S; Abboud R; Wang W
    Ergonomics; 2022 Jul; 65(7):987-998. PubMed ID: 34842063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantification of the Risk of Musculoskeletal Disorders of the Upper Limb Using Fuzzy Logic: A Study of Manual Wheelchair Propulsion.
    Marchiori C; Gagnon DH; Pradon D
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960359
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion.
    Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C
    Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.
    Wang YT; Vrongistinos KD; Xu D
    J Appl Biomech; 2008 Aug; 24(3):280-7. PubMed ID: 18843158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-course of changes in arm impairment after stroke: variables predicting motor recovery over 12 months.
    Mirbagheri MM; Rymer WZ
    Arch Phys Med Rehabil; 2008 Aug; 89(8):1507-13. PubMed ID: 18586221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics.
    Topka H; Konczak J; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):483-92. PubMed ID: 9588783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating pushrim temporal and kinetic measures using an instrumented treadmill during wheelchair propulsion: A concurrent validity study.
    Gagnon DH; Jouval C; Chénier F
    J Biomech; 2016 Jun; 49(9):1976-1982. PubMed ID: 27178022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shoulder pain and cycle to cycle kinematic spatial variability during recovery phase in manual wheelchair users: a pilot investigation.
    Jayaraman C; Moon Y; Rice IM; Hsiao Wecksler ET; Beck CL; Sosnoff JJ
    PLoS One; 2014; 9(3):e89794. PubMed ID: 24614232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.