These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15543456)

  • 61. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reliability and validity of the Microsoft Kinect for assessment of manual wheelchair propulsion.
    Milgrom R; Foreman M; Standeven J; Engsberg JR; Morgan KA
    J Rehabil Res Dev; 2016; 53(6):901-918. PubMed ID: 28475198
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.
    Tsai CY; Boninger ML; Bass SR; Koontz AM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():79-85. PubMed ID: 29698853
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reliability of biomechanical variables during wheelchair ergometry testing.
    Finley MA; Rodgers MM; Rasch EK; McQuade KJ; Keyser RE
    J Rehabil Res Dev; 2002; 39(1):73-81. PubMed ID: 11926329
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A kinematic study of the upper-limb motion of wheelchair basketball shooting in tetraplegic adults.
    Nunome H; Doyo W; Sakurai S; Ikegmai Y; Yabe K
    J Rehabil Res Dev; 2002; 39(1):63-71. PubMed ID: 11926328
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Upper extremity wheelchair kinematics in children with spinal cord injury.
    Slavens BA; Graf A; Krzak J; Vogel L; Harris GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8158-61. PubMed ID: 22256235
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients.
    Carmo AA; Kleiner AF; Costa PH; Barros RM
    Braz J Med Biol Res; 2012 Jun; 45(6):537-45. PubMed ID: 22473324
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preferred elbow position in confined wheelchair configuration.
    Lin CJ; Lin PC; Su FC
    J Biomech; 2009 May; 42(8):1005-9. PubMed ID: 19345359
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques.
    Koontz AM; Kankipati P; Lin YS; Cooper RA; Boninger ML
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):923-9. PubMed ID: 21664733
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Three-dimensional pushrim forces during two speeds of wheelchair propulsion.
    Boninger ML; Cooper RA; Robertson RN; Shimada SD
    Am J Phys Med Rehabil; 1997; 76(5):420-6. PubMed ID: 9354497
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of training on biomechanics of wheelchair propulsion.
    Rodgers MM; Keyser RE; Rasch EK; Gorman PH; Russell PJ
    J Rehabil Res Dev; 2001; 38(5):505-11. PubMed ID: 11732828
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.
    Mallakzadeh M; Akbari H
    J Med Signals Sens; 2014 Oct; 4(4):256-66. PubMed ID: 25426429
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biomechanics and physiology in active manual wheelchair propulsion.
    van der Woude LH; Veeger HE; Dallmeijer AJ; Janssen TW; Rozendaal LA
    Med Eng Phys; 2001 Dec; 23(10):713-33. PubMed ID: 11801413
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.