These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 15543528)
1. Mild detergent treatment of Candida tropicalis reveals a NADPH-dependent reductase in the crude membrane fraction, which enables the production of pure bicyclic exo-alcohol. Katz M; Johanson T; Gorwa-Grauslund MF Yeast; 2004 Nov; 21(15):1253-67. PubMed ID: 15543528 [TBL] [Abstract][Full Text] [Related]
2. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Cheng Q; Sanglard D; Vanhanen S; Liu HT; Bombelli P; Smith A; Slabas AR Biochim Biophys Acta; 2005 Aug; 1735(3):192-203. PubMed ID: 16046182 [TBL] [Abstract][Full Text] [Related]
3. Comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli for the production of an optically pure keto alcohol. Skorupa Parachin N; Carlquist M; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(3):487-97. PubMed ID: 19352650 [TBL] [Abstract][Full Text] [Related]
4. The open reading frame 02797 from Candida tropicalis encodes a novel NADH-dependent aldehyde reductase. Hu X; Han X; Wu L; Wang H; Ouyang Y; Li Q; Kuang X; Xiang Q; Yu X; Li X; Gu Y; Zhao K; Chen Q; Ma M Protein Expr Purif; 2020 Jul; 171():105625. PubMed ID: 32173567 [TBL] [Abstract][Full Text] [Related]
5. An improved stereoselective reduction of a bicyclic diketone by Saccharomyces cerevisiae combining process optimization and strain engineering. Katz M; Sarvary I; Frejd T; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2002 Sep; 59(6):641-8. PubMed ID: 12226719 [TBL] [Abstract][Full Text] [Related]
6. [Medium optimization for enhanced production of carbonyl reductase by Candida tropicalis 104 by response surface methodology]. Wang P; Sun L; He J Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):863-8. PubMed ID: 19777813 [TBL] [Abstract][Full Text] [Related]
7. Novel bioreduction system for the production of chiral alcohols. Kataoka M; Kita K; Wada M; Yasohara Y; Hasegawa J; Shimizu S Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):437-45. PubMed ID: 12838375 [TBL] [Abstract][Full Text] [Related]
9. Partial purification and characterization of a new human membrane-bound carbonyl reductase playing a role in the deactivation of the anticancer drug oracin. Skarydová L; Skarka A; Novotná R; Zivná L; Martin HJ; Wsól V; Maser E Toxicology; 2009 Oct; 264(1-2):52-60. PubMed ID: 19635524 [TBL] [Abstract][Full Text] [Related]
10. Stereoselective enzymatic synthesis of chiral alcohols with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog enantioselectivity. Zhu D; Yang Y; Hua L J Org Chem; 2006 May; 71(11):4202-5. PubMed ID: 16709061 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and characterization of NAD(+)-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913. Ko BS; Jung HC; Kim JH Biotechnol Prog; 2006; 22(6):1708-14. PubMed ID: 17137322 [TBL] [Abstract][Full Text] [Related]
12. A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1,2-ethanediol-producing micro-organism: purification and characterization. Nie Y; Xu Y; Yang M; Mu XQ Lett Appl Microbiol; 2007 May; 44(5):555-62. PubMed ID: 17451525 [TBL] [Abstract][Full Text] [Related]
13. Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Rafiqul IS; Sakinah AM; Zularisam AW Biotechnol Lett; 2015 Jan; 37(1):191-6. PubMed ID: 25214231 [TBL] [Abstract][Full Text] [Related]
14. Candida tropicalis expresses two mitochondrial 2-enoyl thioester reductases that are able to form both homodimers and heterodimers. Torkko JM; Koivuranta KT; Kastaniotis AJ; Airenne TT; Glumoff T; Ilves M; Hartig A; Gurvitz A; Hiltunen JK J Biol Chem; 2003 Oct; 278(42):41213-20. PubMed ID: 12890667 [TBL] [Abstract][Full Text] [Related]
15. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein. Lima LH; Pinheiro CG; de Moraes LM; de Freitas SM; Torres FA Appl Microbiol Biotechnol; 2006 Dec; 73(3):631-9. PubMed ID: 16896602 [TBL] [Abstract][Full Text] [Related]
16. Cloning and heterologous expression of the NADPH cytochrome P450 oxidoreductase genes from an industrial dicarboxylic acid-producing Candida tropicalis. He F; Chen YT Yeast; 2005 Apr; 22(6):481-91. PubMed ID: 15849785 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058 [TBL] [Abstract][Full Text] [Related]
18. Efficient bioreduction of bicyclo[2.2.2]octane-2,5-dione and bicyclo[2.2.2]oct-7-ene-2,5-dione by genetically engineered Saccharomyces cerevisiae. Friberg A; Johanson T; Franzén J; Gorwa-Grauslund MF; Frejd T Org Biomol Chem; 2006 Jun; 4(11):2304-12. PubMed ID: 16729141 [TBL] [Abstract][Full Text] [Related]
19. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134 [TBL] [Abstract][Full Text] [Related]
20. [High throughput screening of active and stereoselective carbonyl reductases]. Zhang H; Chen X; Feng J; Bao J; Wu Q; Zhu D Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):220-30. PubMed ID: 26062343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]