These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 1554354)
21. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Stone MJ; Ruf W; Miles DJ; Edgington TS; Wright PE Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):605-14. PubMed ID: 7654202 [TBL] [Abstract][Full Text] [Related]
22. Mutations of F110 and C126 of the formyl peptide receptor interfere with G-protein coupling and chemotaxis. Jones BE; Miettinen HM; Jesaitis AJ; Mills JS J Periodontol; 2003 Apr; 74(4):475-84. PubMed ID: 12747452 [TBL] [Abstract][Full Text] [Related]
23. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Hoylaerts MF; Manes T; Millán JL Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):23-30. PubMed ID: 1520273 [TBL] [Abstract][Full Text] [Related]
24. Characterization of chicken-liver glutathione S-transferase (GST) A1-1 and A2-2 isoenzymes and their site-directed mutants heterologously expressed in Escherichia coli: identification of Lys-15 and Ser-208 on cGSTA1-1 as residues interacting with ethacrynic acid. Liu LF; Liaw YC; Tam MF Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):593-600. PubMed ID: 9359434 [TBL] [Abstract][Full Text] [Related]
25. Application of 3-dimensional homology modeling of cytochrome P450 2B1 for interpretation of site-directed mutagenesis results. Szklarz GD; Ornstein RL; Halpert JR J Biomol Struct Dyn; 1994 Aug; 12(1):061-78. PubMed ID: 7848559 [TBL] [Abstract][Full Text] [Related]
26. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
27. Specific sequence of motifs of mitochondrial uncoupling proteins. Jezek P; Urbánková E IUBMB Life; 2000 Jan; 49(1):63-70. PubMed ID: 10772343 [TBL] [Abstract][Full Text] [Related]
28. [Protein motifs and their structure-functional role]. Zvonkova EN; Kuz'mina SIu; Esipova OV Bioorg Khim; 1992 Apr; 18(4):453-73. PubMed ID: 1503569 [TBL] [Abstract][Full Text] [Related]
29. Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain. Johnson G; Swart C; Moore SW Biochem J; 2008 May; 411(3):507-14. PubMed ID: 18215127 [TBL] [Abstract][Full Text] [Related]
30. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. van der Geer P; Wiley S; Gish GD; Lai VK; Stephens R; White MF; Kaplan D; Pawson T Proc Natl Acad Sci U S A; 1996 Feb; 93(3):963-8. PubMed ID: 8577769 [TBL] [Abstract][Full Text] [Related]
31. Charged amino acid motifs flanking each extreme of the alphaM4 transmembrane domain are involved in assembly and cell-surface targeting of the muscle nicotinic acetylcholine receptor. Roccamo AM; Barrantes FJ J Neurosci Res; 2007 Feb; 85(2):285-93. PubMed ID: 17131427 [TBL] [Abstract][Full Text] [Related]
32. Essential role of TM V and VI for binding the C-terminal sequences of Des-Arg-kinins. Santos EL; de Picoli Souza K; Cibrián-Uhalte E; Oliveira SM; Bader M; Costa-Neto CM; Oliveira L; Pesquero JB Int Immunopharmacol; 2008 Feb; 8(2):282-8. PubMed ID: 18182241 [TBL] [Abstract][Full Text] [Related]
33. The atypical N-glycosylation motif, Asn-Cys-Cys, in human GPR109A is required for normal cell surface expression and intracellular signaling. Yasuda D; Imura Y; Ishii S; Shimizu T; Nakamura M FASEB J; 2015 Jun; 29(6):2412-22. PubMed ID: 25690651 [TBL] [Abstract][Full Text] [Related]
34. A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia. Lee JC; Kwon YG; Lawrence DS; Edelman AM Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6413-7. PubMed ID: 8022798 [TBL] [Abstract][Full Text] [Related]
35. WKS motifs and the cytokine receptor framework of tissue factor. Bazan JF Trends Biochem Sci; 1991 Sep; 16(9):329. PubMed ID: 1835192 [No Abstract] [Full Text] [Related]
36. Evolutionary conservation of the tissue factor disulfide bonds and identification of a possible oxidoreductase binding motif. van den Hengel LG; van den Berg YW; Reitsma PH; Bos MH; Versteeg HH J Thromb Haemost; 2012 Jan; 10(1):161-2. PubMed ID: 22066736 [No Abstract] [Full Text] [Related]
37. Tissue factor residues that putatively interact with membrane phospholipids. Ke K; Yuan J; Morrissey JH PLoS One; 2014; 9(2):e88675. PubMed ID: 24516673 [TBL] [Abstract][Full Text] [Related]
38. Influence of mutations in tissue factor on the fine specificity of macromolecular substrate activation. Dittmar S; Ruf W; Edgington TS Biochem J; 1997 Feb; 321 ( Pt 3)(Pt 3):787-93. PubMed ID: 9032467 [TBL] [Abstract][Full Text] [Related]
39. Environments of the four tryptophans in the extracellular domain of human tissue factor: comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein. Hasselbacher CA; Rusinova E; Waxman E; Rusinova R; Kohanski RA; Lam W; Guha A; Du J; Lin TC; Polikarpov I Biophys J; 1995 Jul; 69(1):20-9. PubMed ID: 7669897 [TBL] [Abstract][Full Text] [Related]
40. The third Trp-Lys-Ser (WKS) tripeptide motif in tissue factor is associated with a function site. Rehemtulla A; Ruf W; Miles DJ; Edgington TS Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):737-40. PubMed ID: 1554354 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]