These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15543861)

  • 41. On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics.
    Hardman D; Doyle BJ; Semple SI; Richards JM; Newby DE; Easson WJ; Hoskins PR
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1114-24. PubMed ID: 23886969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational analysis of biomechanical contributors to possible endovascular graft failure.
    Li Z; Kleinstreuer C; Farber M
    Biomech Model Mechanobiol; 2005 Dec; 4(4):221-34. PubMed ID: 16270200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.
    Sughimoto K; Shimamura Y; Tezuka C; Tsubota K; Liu H; Okumura K; Masuda Y; Haneishi H
    Heart Vessels; 2016 Jul; 31(7):1168-75. PubMed ID: 26481791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porohyperelastic finite element modeling of abdominal aortic aneurysms.
    Ayyalasomayajula A; Vande Geest JP; Simon BR
    J Biomech Eng; 2010 Oct; 132(10):104502. PubMed ID: 20887020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
    Raghavan ML; Vorp DA; Federle MP; Makaroun MS; Webster MW
    J Vasc Surg; 2000 Apr; 31(4):760-9. PubMed ID: 10753284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms.
    Papaharilaou Y; Ekaterinaris JA; Manousaki E; Katsamouris AN
    J Biomech; 2007; 40(2):367-77. PubMed ID: 16500664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new wall stress equation for aneurysm-rupture prediction.
    Li Z; Kleinstreuer C
    Ann Biomed Eng; 2005 Feb; 33(2):209-13. PubMed ID: 15771274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM; Sung HW; Burlson AC; Yoganathan AP
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions.
    Egelhoff CJ; Budwig RS; Elger DF; Khraishi TA; Johansen KH
    J Biomech; 1999 Dec; 32(12):1319-29. PubMed ID: 10569710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury.
    Yeung JJ; Kim HJ; Abbruzzese TA; Vignon-Clementel IE; Draney-Blomme MT; Yeung KK; Perkash I; Herfkens RJ; Taylor CA; Dalman RL
    J Vasc Surg; 2006 Dec; 44(6):1254-1265. PubMed ID: 17145427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.
    Kelly SC; O'Rourke MJ
    Proc Inst Mech Eng H; 2010; 224(8):955-69. PubMed ID: 20923114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ
    J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.
    Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D
    J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of shape on the stresses in model abdominal aortic aneurysms.
    Elger DF; Blackketter DM; Budwig RS; Johansen KH
    J Biomech Eng; 1996 Aug; 118(3):326-32. PubMed ID: 8872254
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture.
    Kontopodis N; Metaxa E; Papaharilaou Y; Tavlas E; Tsetis D; Ioannou C
    Vascular; 2015 Feb; 23(1):65-77. PubMed ID: 24757027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diameter-related variations of geometrical, mechanical, and mass fraction data in the anterior portion of abdominal aortic aneurysms.
    Tong J; Cohnert T; Holzapfel GA
    Eur J Vasc Endovasc Surg; 2015 Mar; 49(3):262-70. PubMed ID: 25617258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm.
    O'Rourke MJ; McCullough JP; Kelly S
    Proc Inst Mech Eng H; 2012 Jul; 226(7):548-64. PubMed ID: 22913102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model.
    Li Z; Kleinstreuer C
    J Biomech; 2006; 39(12):2264-73. PubMed ID: 16153654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm--steady and unsteady flow cases.
    Taylor TW; Yamaguchi T
    J Biomech Eng; 1994 Feb; 116(1):89-97. PubMed ID: 8189719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.