These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15543864)

  • 21. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Study of the Effects of Dehydration on the Viscoelastic Parameters in the Vocal Fold Mucosa.
    Yang S; Zhang Y; Mills RD; Jiang JJ
    J Voice; 2017 May; 31(3):269-274. PubMed ID: 27241580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elasticity and stress relaxation of a very small vocal fold.
    Riede T; York A; Furst S; Müller R; Seelecke S
    J Biomech; 2011 Jul; 44(10):1936-40. PubMed ID: 21550608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaotic vibrations of a vocal fold model with a unilateral polyp.
    Zhang Y; Jiang JJ
    J Acoust Soc Am; 2004 Mar; 115(3):1266-9. PubMed ID: 15058347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues.
    Chan RW; Titze IR
    Ann Biomed Eng; 2003 Apr; 31(4):482-91. PubMed ID: 12723689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenesis of vocal fold nodules: new insights from a modelling approach.
    Dejonckere PH; Kob M
    Folia Phoniatr Logop; 2009; 61(3):171-9. PubMed ID: 19571551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
    Kelleher JE; Siegmund T; Chan RW; Henslee EA
    J Biomech; 2011 Jun; 44(9):1729-34. PubMed ID: 21497355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS).
    Chan RW
    J Rheol (N Y N Y); 2018 May; 62(3):695-712. PubMed ID: 29780189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of the transient responses of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):93-104. PubMed ID: 19122858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the viscoelastic properties of the vocal folds.
    Wiikmann C; da Silva MA; Arêas EP; Tsuji DH; Sennes LU
    Ann Otol Rhinol Laryngol; 2009 Jun; 118(6):461-4. PubMed ID: 19663378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions.
    Gunter HE
    J Biomech; 2004 Jul; 37(7):1119-24. PubMed ID: 15165883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A constitutive model of the human vocal fold cover for fundamental frequency regulation.
    Zhang K; Siegmund T; Chan RW
    J Acoust Soc Am; 2006 Feb; 119(2):1050-62. PubMed ID: 16521767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On vocal strain.
    Sonninen A; Damsté PH; Jol J; Fokkens J
    Folia Phoniatr (Basel); 1972; 24(5):321-36. PubMed ID: 4670038
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The shear modulus of the human vocal fold, preliminary results from 20 larynxes.
    Goodyer E; Hemmerich S; Müller F; Kobler JB; Hess M
    Eur Arch Otorhinolaryngol; 2007 Jan; 264(1):45-50. PubMed ID: 16924433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elasticity and stress relaxation of rhesus monkey (Macaca mulatta) vocal folds.
    Riede T
    J Exp Biol; 2010 Sep; 213(Pt 17):2924-32. PubMed ID: 20709920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.
    Erath BD; Zañartu M; Peterson SD
    Biomech Model Mechanobiol; 2017 Jun; 16(3):947-960. PubMed ID: 28004225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of extracellular matrix in vocal fold biomechanics using a two-phase model.
    Miri AK; Li NY; Avazmohammadi R; Thibeault SL; Mongrain R; Mongeau L
    Biomech Model Mechanobiol; 2015 Jan; 14(1):49-57. PubMed ID: 24792897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.