These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15543866)

  • 1. Analysis of the dynamic permeation experiment with implication to cartilaginous tissue engineering.
    Gu WY; Sun DN; Lai WM; Mow VC
    J Biomech Eng; 2004 Aug; 126(4):485-91. PubMed ID: 15543866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis.
    Yao H; Gu WY
    Ann Biomed Eng; 2004 Mar; 32(3):380-90. PubMed ID: 15095812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering.
    Sengers BG; Oomens CW; Baaijens FP
    J Biomech Eng; 2004 Feb; 126(1):82-91. PubMed ID: 15171133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading.
    Miyata S; Tateishi T; Ushida T
    J Biomech Eng; 2008 Oct; 130(5):051016. PubMed ID: 19045523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical strategies for articular cartilage regeneration.
    Darling EM; Athanasiou KA
    Ann Biomed Eng; 2003 Oct; 31(9):1114-24. PubMed ID: 14582614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of dynamic visco-elastic properties during cartilage regenerating process in vitro.
    Morita Y; Tomita N; Aoki H; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    Biomed Mater Eng; 2003; 13(4):345-53. PubMed ID: 14646049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of mechanical stimulation in engineering of extracellular matrix (ECM).
    Sebastine IM; Williams DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3648-51. PubMed ID: 17945786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential.
    Lai WM; Mow VC; Sun DD; Ateshian GA
    J Biomech Eng; 2000 Aug; 122(4):336-46. PubMed ID: 11036556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of cell mechanics for cartilage tissue engineering.
    Shieh AC; Athanasiou KA
    Ann Biomed Eng; 2003 Jan; 31(1):1-11. PubMed ID: 12572651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment.
    Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R
    Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading.
    Ramage L; Nuki G; Salter DM
    Scand J Med Sci Sports; 2009 Aug; 19(4):457-69. PubMed ID: 19538538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of stress magnitude on water loss and chondrocyte viability in impacted articular cartilage.
    Milentijevic D; Helfet DL; Torzilli PA
    J Biomech Eng; 2003 Oct; 125(5):594-601. PubMed ID: 14618918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribology approach to the engineering and study of articular cartilage.
    Wimmer MA; Grad S; Kaup T; Hänni M; Schneider E; Gogolewski S; Alini M
    Tissue Eng; 2004; 10(9-10):1436-45. PubMed ID: 15588403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors.
    Gu WY; Lai WM; Mow VC
    J Biomech Eng; 1998 Apr; 120(2):169-80. PubMed ID: 10412377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage.
    Gu WY; Lai WM; Mow VC
    J Biomech; 1993 Jun; 26(6):709-23. PubMed ID: 8514815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.