These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 15543944)
1. Ventricular but not atrial electro-mechanical delay of the embryonic heart is altered by anoxia-reoxygenation and improved by nitric oxide. Maury P; Sarre A; Terrand J; Rosa A; Kucera P; Kappenberger L; Raddatz E Mol Cell Biochem; 2004 Oct; 265(1-2):141-9. PubMed ID: 15543944 [TBL] [Abstract][Full Text] [Related]
2. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Sarre A; Lange N; Kucera P; Raddatz E Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1611-9. PubMed ID: 15550517 [TBL] [Abstract][Full Text] [Related]
3. Ectopic pacing at physiological rate improves postanoxic recovery of the developing heart. Rosa A; Maury JP; Terrand J; Lyon X; Kucera P; Kappenberger L; Raddatz E Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2384-92. PubMed ID: 12742835 [TBL] [Abstract][Full Text] [Related]
4. Postanoxic functional recovery of the developing heart is slightly altered by endogenous or exogenous nitric oxide. Terrand J; Felley-Bosco E; Courjault-Gautier F; Rochat AC; Kucera P; Raddatz E Mol Cell Biochem; 2003 Oct; 252(1-2):53-63. PubMed ID: 14577576 [TBL] [Abstract][Full Text] [Related]
5. Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model. Sarre A; Pedretti S; Gardier S; Raddatz E Pharmacol Res; 2010 Jan; 61(1):85-91. PubMed ID: 19818405 [TBL] [Abstract][Full Text] [Related]
6. Arrhythmogenesis in the developing heart during anoxia-reoxygenation and hypothermia-rewarming: an in vitro model. Sarre A; Maury P; Kucera P; Kappenberger L; Raddatz E J Cardiovasc Electrophysiol; 2006 Dec; 17(12):1350-9. PubMed ID: 17014683 [TBL] [Abstract][Full Text] [Related]
7. Glucose is arrhythmogenic in the anoxic-reoxygenated embryonic chick heart. Tran L; Kucera P; de Ribaupierre Y; Rochat AC; Raddatz E Pediatr Res; 1996 May; 39(5):766-73. PubMed ID: 8726226 [TBL] [Abstract][Full Text] [Related]
8. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart. Raddatz E; Thomas AC; Sarre A; Benathan M Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H820-35. PubMed ID: 21193588 [TBL] [Abstract][Full Text] [Related]
9. Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. Tenthorey D; de Ribaupierre Y; Kucera P; Raddatz E J Cardiovasc Pharmacol; 1998 Feb; 31(2):195-202. PubMed ID: 9475260 [TBL] [Abstract][Full Text] [Related]
10. The L-Type Ca+ and KATP channels may contribute to pacing-induced protection against anoxia-reoxygenation in the embryonic heart model. Bruchez P; Sarre A; Kappenberger L; Raddatz E J Cardiovasc Electrophysiol; 2008 Nov; 19(11):1196-202. PubMed ID: 18554212 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of bicarbonate transport protects embryonic heart against reoxygenation-induced dysfunction. Meiltz A; Kucera P; de Ribaupierre Y; Raddatz E J Mol Cell Cardiol; 1998 Feb; 30(2):327-35. PubMed ID: 9515009 [TBL] [Abstract][Full Text] [Related]
12. STAT3α interacts with nuclear GSK3beta and cytoplasmic RISK pathway and stabilizes rhythm in the anoxic-reoxygenated embryonic heart. Pedretti S; Raddatz E Basic Res Cardiol; 2011 May; 106(3):355-69. PubMed ID: 21279516 [TBL] [Abstract][Full Text] [Related]
13. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance. Robin E; Marcillac F; Raddatz E Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R614-26. PubMed ID: 25632022 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the c-Jun N-terminal kinase activity in the embryonic heart in response to anoxia-reoxygenation: involvement of the Ca2+ and mitoKATP channels. Sarre A; Gardier S; Maurer F; Bonny C; Raddatz E Mol Cell Biochem; 2008 Jun; 313(1-2):133-8. PubMed ID: 18418700 [TBL] [Abstract][Full Text] [Related]
15. Transient anoxia and oxyradicals induce a region-specific activation of MAPKs in the embryonic heart. Gardier S; Pedretti S; Sarre A; Raddatz E Mol Cell Biochem; 2010 Jul; 340(1-2):239-47. PubMed ID: 20306288 [TBL] [Abstract][Full Text] [Related]
16. The role of NO in ischemia/reperfusion injury in isolated rat heart. Andelová E; Barteková M; Pancza D; Styk J; Ravingerová T Gen Physiol Biophys; 2005 Dec; 24(4):411-26. PubMed ID: 16474186 [TBL] [Abstract][Full Text] [Related]
17. Studies of hypoxemic/reoxygenation injury: without aortic clamping. V. Role of the L-arginine-nitric oxide pathway: the nitric oxide paradox. Morita K; Sherman MP; Buckberg GD; Ihnken K; Matheis G; Young HH; Ignarro LJ J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1200-11. PubMed ID: 7475171 [TBL] [Abstract][Full Text] [Related]
18. Sodium ferulate attenuates anoxia/reoxygenation-induced calcium overload in neonatal rat cardiomyocytes by NO/cGMP/PKG pathway. Chen HP; Liao ZP; Huang QR; He M Eur J Pharmacol; 2009 Jan; 603(1-3):86-92. PubMed ID: 19087873 [TBL] [Abstract][Full Text] [Related]
19. The role of platelet-activating factor (PAF) antagonists and nitric oxide in cardiac actions of PAF. Electrophysiological and morphological study. Kecskeméti V; Balogh I J Physiol Pharmacol; 2000 Dec; 51(4 Pt 1):723-35. PubMed ID: 11192945 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of nitric oxide synthase by L-NAME improves ventricular performance in streptozotocin-diabetic rats. Smith JM; Paulson DJ; Romano FD J Mol Cell Cardiol; 1997 Sep; 29(9):2393-402. PubMed ID: 9299363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]