These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15544245)

  • 21. Virtual reality surgical simulation in training.
    Patel HR; Patel BP
    Expert Rev Anticancer Ther; 2012 Apr; 12(4):417-20. PubMed ID: 22500677
    [No Abstract]   [Full Text] [Related]  

  • 22. ENT endoscopic surgical training simulator.
    Edmond CV; Heskamp D; Sluis D; Stredney D; Sessanna D; Wiet G; Yagel R; Weghorst S; Oppenheimer P; Miller J; Levin M; Rosenberg L
    Stud Health Technol Inform; 1997; 39():518-28. PubMed ID: 10173068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human perception of haptic information in minimal access surgery tools for use in simulation.
    Seehusen A; Brett PN; Harrison A
    Stud Health Technol Inform; 2001; 81():453-8. PubMed ID: 11317789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A haptic interface for virtual simulation of endoscopic surgery.
    Rosenberg LB; Stredney D
    Stud Health Technol Inform; 1996; 29():371-87. PubMed ID: 10172846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A medical platform for simulation of surgical procedures.
    Thurfjell L; Lundin A; McLaughlin J
    Stud Health Technol Inform; 2001; 81():509-14. PubMed ID: 11317799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.
    Baur C; Guzzoni D; Georg O
    Stud Health Technol Inform; 1998; 50():110-6. PubMed ID: 10180525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery.
    Barrow A; Akhtar K; Gupte C; Bello F
    Stud Health Technol Inform; 2013; 184():43-7. PubMed ID: 23400127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating haptic distance-to-break using linear and nonlinear materials in a simulated minimally invasive surgery task.
    Hartman LS; Kil I; Pagano CC; Burg T
    Ergonomics; 2016 Sep; 59(9):1171-81. PubMed ID: 26646857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models.
    Ding H; Mitake H; Hasegawa S
    IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. G2H--graphics-to-haptic virtual environment development tool for PC's.
    Acosta E; Temkin B; Krummel TM; Heinrichs WL
    Stud Health Technol Inform; 2000; 70():1-3. PubMed ID: 10977518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Haptic feedback for enhancing realism of walking simulations.
    Turchet L; Burelli P; Serafin S
    IEEE Trans Haptics; 2013; 6(1):35-45. PubMed ID: 24808266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The realization of a haptic (force feedback) interface device for the purpose of angioplasty surgery simulation.
    Barnes SZ; Morr DR; Oggero E; Pagnacco G; Berme N
    Biomed Sci Instrum; 1997; 33():19-24. PubMed ID: 9731329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
    Wu J; Li N; Liu W; Song G; Zhang J
    IEEE Trans Haptics; 2015; 8(4):410-20. PubMed ID: 26054074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining the role of haptic feedback in minimally invasive surgery.
    Bholat OS; Haluck RS; Kutz RH; Gorman PJ; Krummel TM
    Stud Health Technol Inform; 1999; 62():62-6. PubMed ID: 10538400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Open surgery simulation.
    Bielser D; Gross MH
    Stud Health Technol Inform; 2002; 85():57-63. PubMed ID: 15458060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A volumetric approach to virtual simulation of functional endoscopic sinus surgery.
    Wiet GJ; Yagel R; Stredney D; Schmalbrock P; Sessanna DJ; Kurzion Y; Rosenberg L; Levin M; Martin K
    Stud Health Technol Inform; 1997; 39():167-79. PubMed ID: 10173055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Six degree-of-freedom haptic rendering using spatialized normal cone search.
    Johnson DE; Willemsen P; Cohen E
    IEEE Trans Vis Comput Graph; 2005; 11(6):661-70. PubMed ID: 16270859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thin walled models for haptic and graphical rendering of soft tissues in surgical simulations.
    De S; Srinivasan MA
    Stud Health Technol Inform; 1999; 62():94-9. PubMed ID: 10538407
    [No Abstract]   [Full Text] [Related]  

  • 39. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving Haptic Transparency for Uncertain Virtual Environments Using Adaptive Control and Gain-Scheduled Prediction.
    Forbrigger S; Pan YJ
    IEEE Trans Haptics; 2018; 11(4):543-554. PubMed ID: 29994319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.