BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15544263)

  • 1. Effect of sensory substitution on suture manipulation forces for surgical teleoperation.
    Kitagawa M; Dokko D; Okamura AM; Bethea BT; Yuh DD
    Stud Health Technol Inform; 2004; 98():157-63. PubMed ID: 15544263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of haptic feedback to robotic surgery.
    Bethea BT; Okamura AM; Kitagawa M; Fitton TP; Cattaneo SM; Gott VL; Baumgartner WA; Yuh DD
    J Laparoendosc Adv Surg Tech A; 2004 Jun; 14(3):191-5. PubMed ID: 15245675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suture damage during robot-assisted vascular surgery: is it an issue?
    Diks J; Nio D; Linsen MA; Rauwerda JA; Wisselink W
    Surg Laparosc Endosc Percutan Tech; 2007 Dec; 17(6):524-7. PubMed ID: 18097315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-based stereoscopic suturing simulation with force feedback and continuous multipoint interactions for training on the da Vinci surgical system.
    Deo D; De S; Singh TP
    Stud Health Technol Inform; 2007; 125():115-20. PubMed ID: 17377247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems.
    Akinbiyi T; Reiley CE; Saha S; Burschka D; Hasser CJ; Yuh DD; Okamura AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():567-70. PubMed ID: 17945986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.
    Meli L; Pacchierotti C; Prattichizzo D
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1318-27. PubMed ID: 24658255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HazBot: Development of a telemanipulator robot with haptics for emergency response.
    Jurmain JC; Blancero AJ; Geiling JA; Bennett A; Jones C; Berkley J; Vollenweider M; Minsky M; Bowersox JC; Rosen JM
    Am J Disaster Med; 2008; 3(2):87-97. PubMed ID: 18522250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptics in minimally invasive surgery--a review.
    Westebring-van der Putten EP; Goossens RH; Jakimowicz JJ; Dankelman J
    Minim Invasive Ther Allied Technol; 2008; 17(1):3-16. PubMed ID: 18270873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel knot-tying approach for minimally invasive surgical robot systems.
    Wang S; Wang H; Yue L
    Int J Med Robot; 2008 Sep; 4(3):268-76. PubMed ID: 18777516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of haptic learning in telemanipulator-assisted surgery.
    Jacobs S; Holzhey D; Strauss G; Burgert O; Falk V
    Surg Laparosc Endosc Percutan Tech; 2007 Oct; 17(5):402-6. PubMed ID: 18049401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion feedback as a navigation aid in robot assisted neurosurgery.
    Wapler M; Stallkamp J; Weisener T; Urban V
    Stud Health Technol Inform; 1998; 50():215-9. PubMed ID: 10180543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.