These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15544291)

  • 21. BrainTrain: brain simulator for medical VR application.
    Panchaphongsaphak B; Burgkart R; Riener R
    Stud Health Technol Inform; 2005; 111():378-84. PubMed ID: 15718764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A one-DOF freehand haptic device for robotic tele-echography.
    Marchal M; Troccaz J
    Stud Health Technol Inform; 2004; 98():231-3. PubMed ID: 15544277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technological advances in robotic-assisted laparoscopic surgery.
    Tan GY; Goel RK; Kaouk JH; Tewari AK
    Urol Clin North Am; 2009 May; 36(2):237-49, ix. PubMed ID: 19406324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A real-time compliance mapping system using standard endoscopic surgical forceps.
    Fakhry M; Bello F; Hanna GB
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1245-53. PubMed ID: 19174345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Newly developed haptic forceps enables sensitive, real-time measurements of organ elasticity.
    Atsuta K; Ozawa S; Shimojima N; Shimono T; Susa S; Takei T; Ohnishi K; Morikawa Y
    Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):177-83. PubMed ID: 20158411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tactile resonance sensors in medicine.
    Lindahl OA; Constantinou CE; Eklund A; Murayama Y; Hallberg P; Omata S
    J Med Eng Technol; 2009; 33(4):263-73. PubMed ID: 19384701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trauma Pod: a semi-automated telerobotic surgical system.
    Garcia P; Rosen J; Kapoor C; Noakes M; Elbert G; Treat M; Ganous T; Hanson M; Manak J; Hasser C; Rohler D; Satava R
    Int J Med Robot; 2009 Jun; 5(2):136-46. PubMed ID: 19222048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review on aspects of artificial tactile feedback in laparoscopic surgery.
    Schostek S; Schurr MO; Buess GF
    Med Eng Phys; 2009 Oct; 31(8):887-98. PubMed ID: 19595620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tactile feedback exceeds visual feedback to display tissue slippage in a laparoscopic grasper.
    Westebring-van der Putten EP; Lysen WW; Henssen VD; Koopmans N; Goossens RH; van den Dobbelsteen JJ; Dankelman J; Jakimowcz J
    Stud Health Technol Inform; 2009; 142():420-5. PubMed ID: 19377198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation.
    Brouwer I; Ustin J; Bentley L; Sherman A; Dhruv N; Tendick F
    Stud Health Technol Inform; 2001; 81():69-74. PubMed ID: 11317820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems.
    Yamamoto A; Nagasawa S; Yamamoto H; Higuchi T
    IEEE Trans Vis Comput Graph; 2006; 12(2):168-77. PubMed ID: 16509376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validating advanced robot-assisted laparoscopic training task in virtual reality.
    Brown-Clerk B; Siu KC; Katsavelis D; Lee I; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2008; 132():45-9. PubMed ID: 18391254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniature in vivo robotics and novel robotic surgical platforms.
    Shah BC; Buettner SL; Lehman AC; Farritor SM; Oleynikov D
    Urol Clin North Am; 2009 May; 36(2):251-63, x. PubMed ID: 19406325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robotic technology applied to meet the requirements of tools to support microsurgery and cellular surgery.
    Brett P; Ma X; Tritto G
    Stud Health Technol Inform; 2004; 103():109-17. PubMed ID: 15747912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation for training with the Autosuture Endo Stitch device.
    Kurenov SN; Punak S; Kim M; Peters J; Cendan JC
    Surg Innov; 2006 Dec; 13(4):283-7. PubMed ID: 17227928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The benefits of virtual reality simulator training for laparoscopic surgery.
    Hart R; Karthigasu K
    Curr Opin Obstet Gynecol; 2007 Aug; 19(4):297-302. PubMed ID: 17625408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Future perspectives for intraoperative MRI.
    Jolesz FA
    Neurosurg Clin N Am; 2005 Jan; 16(1):201-13. PubMed ID: 15561539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hand-held robotic instrument for dextrous laparoscopic interventions.
    Piccigallo M; Focacci F; Tonet O; Megali G; Quaglia C; Dario P
    Int J Med Robot; 2008 Dec; 4(4):331-8. PubMed ID: 18803339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.