These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 1554431)

  • 1. Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters.
    Mistlberger RE
    Behav Neurosci; 1992 Feb; 106(1):192-202. PubMed ID: 1554431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian properties of anticipatory activity to restricted water access in suprachiasmatic-ablated hamsters.
    Mistlberger RE
    Am J Physiol; 1993 Jan; 264(1 Pt 2):R22-9. PubMed ID: 8430882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards.
    Bertolucci C; Sovrano VA; Magnone MC; Foà A
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2121-31. PubMed ID: 11080077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of a daily neuronal rhythm in the suprachiasmatic nuclei of acircadian Djungarian hamsters.
    Margraf RR; Puchalski W; Lynch GR
    Neurosci Lett; 1992 Aug; 142(2):175-8. PubMed ID: 1454212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment of circadian clocks in mammals by arousal and food.
    Mistlberger RE; Antle MC
    Essays Biochem; 2011 Jun; 49(1):119-36. PubMed ID: 21819388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice.
    Abe H; Honma S; Honma K
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R607-15. PubMed ID: 16990494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording and analysis of circadian rhythms in running-wheel activity in rodents.
    Verwey M; Robinson B; Amir S
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesions dorsal to the suprachiasmatic nuclei abolish split activity rhythms of hamsters.
    Harrington ME; Eskes GA; Dickson P; Rusak B
    Brain Res Bull; 1990 Apr; 24(4):593-7. PubMed ID: 2357590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the phase and period of circadian rhythms restored by suprachiasmatic transplants.
    Matsumoto S; Basil J; Jetton AE; Lehman MN; Bittman EL
    J Biol Rhythms; 1996 Jun; 11(2):145-62. PubMed ID: 8744242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness.
    Sato RY; Yamanaka Y
    Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of damage to SCN neurons and efferent pathways on circadian activity rhythms of hamsters.
    Harrington ME; Rahmani T; Lee CA
    Brain Res Bull; 1993; 30(5-6):655-69. PubMed ID: 8457913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Excitatory Effects of GABA within the Suprachiasmatic Nucleus: Regulation of Na-K-2Cl Cotransporters (NKCCs) by Environmental Lighting Conditions.
    McNeill JK; Walton JC; Ryu V; Albers HE
    J Biol Rhythms; 2020 Jun; 35(3):275-286. PubMed ID: 32406304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms.
    Rusak B; Mistlberger RE; Losier B; Jones CH
    J Comp Physiol A; 1988 Dec; 164(2):165-71. PubMed ID: 3244126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of hamster circadian rhythms: role of the maternal suprachiasmatic nucleus.
    Davis FC; Gorski RA
    J Comp Physiol A; 1988 Apr; 162(5):601-10. PubMed ID: 3373453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.