These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15544320)

  • 1. Novel force resolver designs for a haptic surgery simulator.
    Zivanovic A; Dibble E; Davies B
    Stud Health Technol Inform; 2004; 98():422-4. PubMed ID: 15544320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vision-based surgical tool tracking approach for untethered surgery simulation and training.
    English J; Chang CY; Tardella N; Hu J
    Stud Health Technol Inform; 2005; 111():126-32. PubMed ID: 15718713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one degree of freedom haptic system to investigate issues in human perception with particular application to probing tissue.
    Dibble E; Zivanovic A; Davies B
    Stud Health Technol Inform; 2004; 98():69-71. PubMed ID: 15544245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simulator to explore the role of haptic feedback in cataract surgery training.
    Doyle L; Gauthier N; Ramanathan S; Okamura A
    Stud Health Technol Inform; 2008; 132():106-11. PubMed ID: 18391267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic interface of the KAIST-Ewha colonoscopy simulator II.
    Woo HS; Kim WS; Ahn W; Lee DY; Yi SY
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):746-53. PubMed ID: 19000954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a patient-specific simulator for laparoscopic renal surgery.
    Makiyama K; Nagasaka M; Inuiya T; Takanami K; Ogata M; Kubota Y
    Int J Urol; 2012 Sep; 19(9):829-35. PubMed ID: 22640644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A haptic VR milling surgery simulator--using high-resolution CT-data.
    Eriksson M; Dixon M; Wikander J
    Stud Health Technol Inform; 2006; 119():138-43. PubMed ID: 16404033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering requirements for a haptic simulator for knee arthroscopy training.
    Zivanovic A; Dibble E; Davies B; Moody L; Waterworth A
    Stud Health Technol Inform; 2003; 94():413-8. PubMed ID: 15455938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 6 degrees-of-freedom haptic milling simulator for surgical training of vertebral operations.
    Eriksson M; Wikander J
    Stud Health Technol Inform; 2012; 173():126-8. PubMed ID: 22356972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force feedback for virtual reality based minimally invasive surgery simulator.
    Baumann R; Glauser D; Tappy D; Baur C; Clavel R
    Stud Health Technol Inform; 1996; 29():564-79. PubMed ID: 10172850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the effectiveness of vibrotactile feedback to improve the haptic realism of an arthroscopy training simulator.
    Tenzer Y; Davies B; Rodriguez y Baena F
    Stud Health Technol Inform; 2008; 132():517-22. PubMed ID: 18391360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ exclusion simulation with multi-finger haptic interaction for open surgery simulator.
    Kuroda Y; Hirai M; Nakao M; Sato T; Kuroda T; Nagase K; Yoshihara H
    Stud Health Technol Inform; 2007; 125():244-9. PubMed ID: 17377277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal considerations for the contemporary high-fidelity endovascular simulator design used in training and evaluation.
    Eslahpazir BA; Goldstone J; Allemang MT; Wang JC; Kashyap VS
    J Vasc Surg; 2014 Apr; 59(4):1154-62. PubMed ID: 24418640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics modeling for parallel haptic interfaces with force sensing and control.
    Bernstein N; Lawrence D; Pao L
    IEEE Trans Haptics; 2013; 6(4):429-39. PubMed ID: 24808395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing surgeon and novice force skill on a haptic stiffness simulator for laparoscopic surgery.
    Singapogu RB; Smith DE; Altenhoff BM; Long LO; Prabhu VV; Pagano CC; Burg TC; Burg KJ
    Stud Health Technol Inform; 2012; 173():469-74. PubMed ID: 22357038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A virtual reality simulator for ultrasound-guided biopsy training.
    Dong Ni ; Wing Yin Chan ; Jing Qin ; Yim-Pan Chui ; Ingrid Qu ; Ho SS; Pheng-Ann Heng
    IEEE Comput Graph Appl; 2011; 31(2):36-48. PubMed ID: 24808027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery.
    Barrow A; Akhtar K; Gupte C; Bello F
    Stud Health Technol Inform; 2013; 184():43-7. PubMed ID: 23400127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.