BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15544802)

  • 1. Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo.
    Szurmant H; Bunn MW; Cho SH; Ordal GW
    J Mol Biol; 2004 Dec; 344(4):919-28. PubMed ID: 15544802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane organization of the Bacillus subtilis chemoreceptor McpB deduced by cysteine disulfide crosslinking.
    Bunn MW; Ordal GW
    J Mol Biol; 2003 Aug; 331(4):941-9. PubMed ID: 12909020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain.
    Beel BD; Hazelbauer GL
    Mol Microbiol; 2001 May; 40(4):824-34. PubMed ID: 11401690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis.
    Glekas GD; Foster RM; Cates JR; Estrella JA; Wawrzyniak MJ; Rao CV; Ordal GW
    J Biol Chem; 2010 Jan; 285(3):1870-8. PubMed ID: 19864420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of protein structure in intact cells: crosslinking in vivo between introduced cysteines in the transmembrane domain of a bacterial chemoreceptor.
    Hughson AG; Lee GF; Hazelbauer GL
    Protein Sci; 1997 Feb; 6(2):315-22. PubMed ID: 9041632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR.
    Ottemann KM; Thorgeirsson TE; Kolodziej AF; Shin YK; Koshland DE
    Biochemistry; 1998 May; 37(20):7062-9. PubMed ID: 9585515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the transmembrane domain of bacterial chemoreceptors.
    Peach ML; Hazelbauer GL; Lybrand TP
    Protein Sci; 2002 Apr; 11(4):912-23. PubMed ID: 11910034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor conformational changes enhance methylesterase activity during chemotaxis by Bacillus subtilis.
    Bunn MW; Ordal GW
    Mol Microbiol; 2004 Feb; 51(3):721-8. PubMed ID: 14731274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole.
    Homma M; Shiomi D; Homma M; Kawagishi I
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3462-7. PubMed ID: 14993606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity.
    Lai WC; Peach ML; Lybrand TP; Hazelbauer GL
    Protein Sci; 2006 Jan; 15(1):94-101. PubMed ID: 16322572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking.
    Bauer CM; Pinto LH; Cross TA; Lamb RA
    Virology; 1999 Feb; 254(1):196-209. PubMed ID: 9927586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis.
    Kirby JR; Saulmon MM; Kristich CJ; Ordal GW
    J Biol Chem; 1999 Apr; 274(16):11092-100. PubMed ID: 10196193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane helix tilting and ligand-induced conformational changes in the lactose permease determined by site-directed chemical crosslinking in situ.
    Wu J; Hardy D; Kaback HR
    J Mol Biol; 1998 Oct; 282(5):959-67. PubMed ID: 9753547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of transmembrane helix TM1 of the DcuS sensor kinase of
    Stopp M; Steinmetz PA; Unden G
    Biol Chem; 2021 Sep; 402(10):1239-1246. PubMed ID: 34355547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide cross-linking studies of the transmembrane regions of the aspartate sensory receptor of Escherichia coli.
    Lynch BA; Koshland DE
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10402-6. PubMed ID: 1660136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation.
    Parat M; Blanchet J; De Léan A
    Biochemistry; 2010 Jun; 49(22):4601-10. PubMed ID: 20214400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo crosslinking methods for analyzing the assembly and architecture of chemoreceptor arrays.
    Studdert CA; Parkinson JS
    Methods Enzymol; 2007; 423():414-31. PubMed ID: 17609143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural organization and interactions of transmembrane domains in tetraspanin proteins.
    Kovalenko OV; Metcalf DG; DeGrado WF; Hemler ME
    BMC Struct Biol; 2005 Jun; 5():11. PubMed ID: 15985154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.