BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15545362)

  • 21. Influence of high hydrostatic pressure on the proteolysis of beta-lactoglobulin A by trypsin.
    Chicón R; Belloque J; Recio I; López-Fandiño R
    J Dairy Res; 2006 Feb; 73(1):121-8. PubMed ID: 16433971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of capillary electrophoresis in the identification of phenotypes containing the beta-lactoglobulin C variant.
    Paterson GR; Otter DE; Hill JP
    J Dairy Sci; 1995 Dec; 78(12):2637-44. PubMed ID: 8675750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro digestion of beta-lactoglobulin fibrils formed by heat treatment at low pH.
    Bateman L; Ye A; Singh H
    J Agric Food Chem; 2010 Sep; 58(17):9800-8. PubMed ID: 20684554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel polymorphisms in the bovine beta-lactoglobulin gene and their effects on beta-lactoglobulin protein concentration in milk.
    Ganai NA; Bovenhuis H; van Arendonk JA; Visker MH
    Anim Genet; 2009 Apr; 40(2):127-33. PubMed ID: 19032698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2.
    Akkermans C; Venema P; van der Goot AJ; Gruppen H; Bakx EJ; Boom RM; van der Linden E
    Biomacromolecules; 2008 May; 9(5):1474-9. PubMed ID: 18416530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of beta-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides.
    Hernández-Ledesma B; Ramos M; Recio I; Amigo L
    J Chromatogr A; 2006 May; 1116(1-2):31-7. PubMed ID: 16580004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial activity of bovine β-lactoglobulin against mastitis-causing bacteria.
    Chaneton L; Pérez Sáez JM; Bussmann LE
    J Dairy Sci; 2011 Jan; 94(1):138-45. PubMed ID: 21183025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of protein hydrolysis on the growth kinetics of β-lg fibrils.
    Kroes-Nijboer A; Venema P; Bouman J; van der Linden E
    Langmuir; 2011 May; 27(10):5753-61. PubMed ID: 21510654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A procedure for the purification of beta-lactoglobulin from bovine milk using gel filtration chromatography at low pH.
    Naqvi Z; Khan RH; Saleemuddin M
    Prep Biochem Biotechnol; 2010; 40(4):326-36. PubMed ID: 21108136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of disulfide interactions and hydrolysis on the thermal aggregation of β-lactoglobulin.
    Mudgal P; Daubert CR; Clare DA; Foegeding EA
    J Agric Food Chem; 2011 Mar; 59(5):1491-7. PubMed ID: 20812724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enterocyte and M-cell transport of native and heat-denatured bovine beta-lactoglobulin: significance of heat denaturation.
    Rytkönen J; Valkonen KH; Virtanen V; Foxwell RA; Kyd JM; Cripps AW; Karttunen TJ
    J Agric Food Chem; 2006 Feb; 54(4):1500-7. PubMed ID: 16478280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foaming and interfacial properties of hydrolyzed beta-lactoglobulin.
    Davis JP; Doucet D; Foegeding EA
    J Colloid Interface Sci; 2005 Aug; 288(2):412-22. PubMed ID: 15927608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and sequence determination of a new variant beta-lactoglobulin II from donkey.
    Cunsolo V; Costa A; Saletti R; Muccilli V; Foti S
    Rapid Commun Mass Spectrom; 2007; 21(8):1438-46. PubMed ID: 17377935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Digestive diversity and kinetic intrigue among heated and unheated β-lactoglobulin species.
    Loveday SM; Peram MR; Singh H; Ye A; Jameson GB
    Food Funct; 2014 Nov; 5(11):2783-91. PubMed ID: 25259629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Β-lactoglobulin self-assembly: structural changes in early stages and disulfide bonding in fibrils.
    Dave AC; Loveday SM; Anema SG; Loo TS; Norris GE; Jameson GB; Singh H
    J Agric Food Chem; 2013 Aug; 61(32):7817-28. PubMed ID: 23848407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of beta-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments.
    Chicón R; López-Fandiño R; Alonso E; Belloque J
    J Dairy Sci; 2008 Mar; 91(3):928-38. PubMed ID: 18292248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface.
    Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y
    Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of disulfide bond formation during thermal aggregation in solutions of beta-lactoglobulin B and kappa-casein A.
    Livney YD; Dalgleish DG
    J Agric Food Chem; 2004 Aug; 52(17):5527-32. PubMed ID: 15315395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emulsification of chemical and enzymatic hydrolysates of beta-lactoglobulin: characterization of the peptides adsorbed at the interface.
    Rahali V; Chobert JM; Haertlé T; Guéguen J
    Nahrung; 2000 Apr; 44(2):89-95. PubMed ID: 10795574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptides obtained by tryptic hydrolysis of bovine beta-lactoglobulin induce specific oral tolerance in mice.
    Pecquet S; Bovetto L; Maynard F; Fritsché R
    J Allergy Clin Immunol; 2000 Mar; 105(3):514-21. PubMed ID: 10719302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.