BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 15546004)

  • 1. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome.
    Ng CM; Cheng A; Myers LA; Martinez-Murillo F; Jie C; Bedja D; Gabrielson KL; Hausladen JM; Mecham RP; Judge DP; Dietz HC
    J Clin Invest; 2004 Dec; 114(11):1586-92. PubMed ID: 15546004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marfan syndrome and mitral valve prolapse.
    Weyman AE; Scherrer-Crosbie M
    J Clin Invest; 2004 Dec; 114(11):1543-6. PubMed ID: 15578086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitral valve disease in Marfan syndrome and related disorders.
    Judge DP; Rouf R; Habashi J; Dietz HC
    J Cardiovasc Transl Res; 2011 Dec; 4(6):741-7. PubMed ID: 21866385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome.
    Neptune ER; Frischmeyer PA; Arking DE; Myers L; Bunton TE; Gayraud B; Ramirez F; Sakai LY; Dietz HC
    Nat Genet; 2003 Mar; 33(3):407-11. PubMed ID: 12598898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-29b participates in early aneurysm development in Marfan syndrome.
    Merk DR; Chin JT; Dake BA; Maegdefessel L; Miller MO; Kimura N; Tsao PS; Iosef C; Berry GJ; Mohr FW; Spin JM; Alvira CM; Robbins RC; Fischbein MP
    Circ Res; 2012 Jan; 110(2):312-24. PubMed ID: 22116819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis.
    Lemaire R; Bayle J; Lafyatis R
    Curr Opin Rheumatol; 2006 Nov; 18(6):582-7. PubMed ID: 17053502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of Circulating Monocytes Ameliorates the Progression of Myxomatous Valve Degeneration in Marfan Syndrome.
    Kim AJ; Xu N; Umeyama K; Hulin A; Ponny SR; Vagnozzi RJ; Green EA; Hanson P; McManus BM; Nagashima H; Yutzey KE
    Circulation; 2020 Jan; 141(2):132-146. PubMed ID: 31928435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers.
    Geirsson A; Singh M; Ali R; Abbas H; Li W; Sanchez JA; Hashim S; Tellides G
    Circulation; 2012 Sep; 126(11 Suppl 1):S189-97. PubMed ID: 22965982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular biological aspects of Marfan syndromes].
    Belsing TZ; Lund AM; Abildstrøm SZ; Søndergaard L; Friis-Hansen L
    Ugeskr Laeger; 2011 Jan; 173(5):333-7. PubMed ID: 21276395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathogenesis of aortopathy in Marfan syndrome and related diseases.
    Jones JA; Ikonomidis JS
    Curr Cardiol Rep; 2010 Mar; 12(2):99-107. PubMed ID: 20425163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aortopathy in a Mouse Model of Marfan Syndrome Is Not Mediated by Altered Transforming Growth Factor β Signaling.
    Wei H; Hu JH; Angelov SN; Fox K; Yan J; Enstrom R; Smith A; Dichek DA
    J Am Heart Assoc; 2017 Jan; 6(1):. PubMed ID: 28119285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress towards a molecular understanding of Marfan syndrome.
    Dietz HC; Loeys B; Carta L; Ramirez F
    Am J Med Genet C Semin Med Genet; 2005 Nov; 139C(1):4-9. PubMed ID: 16273535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.
    Hulin A; Moore V; James JM; Yutzey KE
    Cardiovasc Res; 2017 Jan; 113(1):40-51. PubMed ID: 28069701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data.
    Hulin A; Deroanne C; Lambert C; Defraigne JO; Nusgens B; Radermecker M; Colige A
    Cardiovasc Pathol; 2013; 22(4):245-50. PubMed ID: 23261354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous activation of BMP-2 signaling overcomes TGFβ-mediated inhibition of osteogenesis in Marfan embryonic stem cells and Marfan patient-specific induced pluripotent stem cells.
    Quarto N; Li S; Renda A; Longaker MT
    Stem Cells; 2012 Dec; 30(12):2709-19. PubMed ID: 23037987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the molecular basis of Marfan syndrome: a growth industry.
    Byers PH
    J Clin Invest; 2004 Jul; 114(2):161-3. PubMed ID: 15254580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.
    Tae HJ; Petrashevskaya N; Marshall S; Krawczyk M; Talan M
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(2):H290-9. PubMed ID: 26566724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders.
    Mizuguchi T; Matsumoto N
    J Hum Genet; 2007; 52(1):1-12. PubMed ID: 17061023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marfan syndrome and its disorder in periodontal tissues.
    Suda N; Shiga M; Ganburged G; Moriyama K
    J Exp Zool B Mol Dev Evol; 2009 Jul; 312B(5):503-9. PubMed ID: 19199346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrillin and other matrix proteins in mitral valve prolapse syndrome.
    Nasuti JF; Zhang PJ; Feldman MD; Pasha T; Khurana JS; Gorman JH; Gorman RC; Narula J; Narula N
    Ann Thorac Surg; 2004 Feb; 77(2):532-6. PubMed ID: 14759433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.