These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 15546044)
1. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-d) by a hypersaline microbial mat and related functional changes in the mat community. Grötzschel S; Köster J; de Beer D Microb Ecol; 2004 Aug; 48(2):254-62. PubMed ID: 15546044 [TBL] [Abstract][Full Text] [Related]
2. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. Decker KL; Potter CS; Bebout BM; Marais DJ; Carpenter S; Discipulo M; Hoehler TM; Miller SR; Thamdrup B; Turk KA; Visscher PT FEMS Microbiol Ecol; 2005 May; 52(3):377-95. PubMed ID: 16329922 [TBL] [Abstract][Full Text] [Related]
3. Sorption of paraquat and 2,4-D by an Oscillatoria sp.-dominated cyanobacterial mat. Kumar D; Prakash B; Pandey LK; Gaur JP Appl Biochem Biotechnol; 2010 Apr; 160(8):2475-85. PubMed ID: 19634017 [TBL] [Abstract][Full Text] [Related]
4. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
5. Degradation of petroleum model compounds immobilized on clay by a hypersaline microbial mat. Grötzschel S; Köster J; Abed RM; de Beer D Biodegradation; 2002; 13(4):273-83. PubMed ID: 12521291 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation of oil by marine microbial mats. Cohen Y Int Microbiol; 2002 Dec; 5(4):189-93. PubMed ID: 12497184 [TBL] [Abstract][Full Text] [Related]
7. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. D'Amelio ED; Cohen Y; Des Marais DJ Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090 [TBL] [Abstract][Full Text] [Related]
8. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats. Houghton J; Fike D; Druschel G; Orphan V; Hoehler TM; Des Marais DJ Geobiology; 2014 Nov; 12(6):557-74. PubMed ID: 25312537 [TBL] [Abstract][Full Text] [Related]
9. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Canfield DE; Des Marais DJ Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735 [TBL] [Abstract][Full Text] [Related]
10. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). Jonkers HM; Ludwig R; Wit R; Pringault O; Muyzer G; Niemann H; Finke N; Beer D FEMS Microbiol Ecol; 2003 May; 44(2):175-89. PubMed ID: 19719635 [TBL] [Abstract][Full Text] [Related]
12. Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain. Polerecky L; Bachar A; Schoon R; Grinstein M; Jørgensen BB; de Beer D; Jonkers HM Environ Microbiol; 2007 Aug; 9(8):2007-24. PubMed ID: 17635546 [TBL] [Abstract][Full Text] [Related]
13. Effect of oxygen concentration on photosynthesis and respiration in two hypersaline microbial mats. Grötzschel S; de Beer D Microb Ecol; 2002 Oct; 44(3):208-16. PubMed ID: 12154389 [TBL] [Abstract][Full Text] [Related]
14. A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. Green SJ; Blackford C; Bucki P; Jahnke LL; Prufert-Bebout L ISME J; 2008 May; 2(5):457-70. PubMed ID: 18288215 [TBL] [Abstract][Full Text] [Related]
15. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Wieland A; Zopfi J; Benthien M; Kühl M Microb Ecol; 2005 Jan; 49(1):34-49. PubMed ID: 15614465 [TBL] [Abstract][Full Text] [Related]
16. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1. Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228 [TBL] [Abstract][Full Text] [Related]
17. Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Fründ C; Cohen Y Appl Environ Microbiol; 1992 Jan; 58(1):70-7. PubMed ID: 16348641 [TBL] [Abstract][Full Text] [Related]
18. Metabolic shifts in hypersaline microbial mats upon addition of organic substrates. Grötzschel S; Abed RM; de Beer D Environ Microbiol; 2002 Nov; 4(11):683-95. PubMed ID: 12460276 [TBL] [Abstract][Full Text] [Related]
19. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study. Merini LJ; Cuadrado V; Flocco CG; Giulietti AM Chemosphere; 2007 Jun; 68(2):259-65. PubMed ID: 17316752 [TBL] [Abstract][Full Text] [Related]
20. Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Wieland A; Pape T; Möbius J; Klock JH; Michaelis W Geobiology; 2008 Mar; 6(2):171-86. PubMed ID: 18380879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]