BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15546208)

  • 1. Developing a peptide-based near-infrared molecular probe for protease sensing.
    Pham W; Choi Y; Weissleder R; Tung CH
    Bioconjug Chem; 2004; 15(6):1403-7. PubMed ID: 15546208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter.
    Tung CH; Mahmood U; Bredow S; Weissleder R
    Cancer Res; 2000 Sep; 60(17):4953-8. PubMed ID: 10987312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice.
    Chen K; Yap LP; Park R; Hui X; Wu K; Fan D; Chen X; Conti PS
    Amino Acids; 2012 Apr; 42(4):1329-37. PubMed ID: 21212998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual fluorochrome probe for imaging proteases.
    Kircher MF; Weissleder R; Josephson L
    Bioconjug Chem; 2004; 15(2):242-8. PubMed ID: 15025519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "One-step" detection of matrix metalloproteinase activity using a fluorogenic peptide probe-immobilized diagnostic kit.
    Ryu JH; Lee A; Lee S; Ahn CH; Park JW; Leary JF; Park S; Kim K; Kwon IC; Youn IC; Choi K
    Bioconjug Chem; 2010 Jul; 21(7):1378-84. PubMed ID: 20575580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene.
    Myochin T; Hanaoka K; Komatsu T; Terai T; Nagano T
    J Am Chem Soc; 2012 Aug; 134(33):13730-7. PubMed ID: 22830429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous fluorescence imaging of protease expression and vascularity during murine colonoscopy for colonic lesion characterization.
    Funovics MA; Alencar H; Montet X; Weissleder R; Mahmood U
    Gastrointest Endosc; 2006 Oct; 64(4):589-97. PubMed ID: 16996355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease.
    Aikawa E; Nahrendorf M; Sosnovik D; Lok VM; Jaffer FA; Aikawa M; Weissleder R
    Circulation; 2007 Jan; 115(3):377-86. PubMed ID: 17224478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia.
    Klohs J; Baeva N; Steinbrink J; Bourayou R; Boettcher C; Royl G; Megow D; Dirnagl U; Priller J; Wunder A
    J Cereb Blood Flow Metab; 2009 Jul; 29(7):1284-92. PubMed ID: 19417756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical methods.
    Bremer C
    Handb Exp Pharmacol; 2008; (185 Pt 2):3-12. PubMed ID: 18626596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark quenched matrix metalloproteinase fluorogenic probe for imaging osteoarthritis development in vivo.
    Lee S; Park K; Lee SY; Ryu JH; Park JW; Ahn HJ; Kwon IC; Youn IC; Kim K; Choi K
    Bioconjug Chem; 2008 Sep; 19(9):1743-7. PubMed ID: 18729392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection--study in mice.
    Alencar H; Funovics MA; Figueiredo J; Sawaya H; Weissleder R; Mahmood U
    Radiology; 2007 Jul; 244(1):232-8. PubMed ID: 17507718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes.
    Zhang Z; Achilefu S
    Org Lett; 2004 Jun; 6(12):2067-70. PubMed ID: 15176820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs.
    Sasaki E; Kojima H; Nishimatsu H; Urano Y; Kikuchi K; Hirata Y; Nagano T
    J Am Chem Soc; 2005 Mar; 127(11):3684-5. PubMed ID: 15771488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides.
    Park K; Hong HY; Moon HJ; Lee BH; Kim IS; Kwon IC; Rhee K
    J Control Release; 2008 Jun; 128(3):217-23. PubMed ID: 18457896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activatable imaging probes with amplified fluorescent signals.
    Lee S; Park K; Kim K; Choi K; Kwon IC
    Chem Commun (Camb); 2008 Sep; (36):4250-60. PubMed ID: 18802536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of cerebrospinal fluid space and movement of hydrocephalus mice using near infrared fluorescence.
    Shibata Y; Kruskal JB; Palmer MR
    Neurol Sci; 2007 Apr; 28(2):87-92. PubMed ID: 17464471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications.
    Yong KT; Roy I; Ding H; Bergey EJ; Prasad PN
    Small; 2009 Sep; 5(17):1997-2004. PubMed ID: 19466710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High efficiency synthesis of a bioconjugatable near-infrared fluorochrome.
    Pham W; Lai WF; Weissleder R; Tung CH
    Bioconjug Chem; 2003; 14(5):1048-51. PubMed ID: 13129411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.