These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 15546620)

  • 21. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement.
    Hamdan SM; Johnson DE; Tanner NA; Lee JB; Qimron U; Tabor S; van Oijen AM; Richardson CC
    Mol Cell; 2007 Aug; 27(4):539-49. PubMed ID: 17707227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the "YxGG/A" motif of Phi29 DNA polymerase in protein-primed replication.
    Truniger V; Blanco L; Salas M
    J Mol Biol; 1999 Feb; 286(1):57-69. PubMed ID: 9931249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Function of the C-terminus of phi29 DNA polymerase in DNA and terminal protein binding.
    Truniger V; Lázaro JM; Salas M
    Nucleic Acids Res; 2004; 32(1):361-70. PubMed ID: 14729920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strand Displacement and Unwinding Assays to Study the Concerted Action of the DNA Polymerase and SSB During Phi29 TP-DNA Replication.
    Del Prado A; Salas M
    Methods Mol Biol; 2021; 2281():333-342. PubMed ID: 33847970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of Escherichia coli thioredoxin, the processivity factor, with bacteriophage T7 DNA polymerase and helicase.
    Ghosh S; Hamdan SM; Cook TE; Richardson CC
    J Biol Chem; 2008 Nov; 283(46):32077-84. PubMed ID: 18757858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site.
    Pérez-Arnaiz P; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2009 Sep; 391(5):797-807. PubMed ID: 19576228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization.
    Chowdhury K; Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12469-74. PubMed ID: 11050188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation.
    Pérez-Arnaiz P; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2010 Jan; 395(2):223-33. PubMed ID: 19883660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. phi 29 DNA polymerase residue Leu384, highly conserved in motif B of eukaryotic type DNA replicases, is involved in nucleotide insertion fidelity.
    Truniger V; Lázaro JM; de Vega M; Blanco L; Salas M
    J Biol Chem; 2003 Aug; 278(35):33482-91. PubMed ID: 12805385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-Primed Replication of Bacteriophage Φ29 DNA.
    Salas M; de Vega M
    Enzymes; 2016; 39():137-67. PubMed ID: 27241929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined Solution and Crystal Methods Reveal the Electrostatic Tethers That Provide a Flexible Platform for Replication Activities in the Bacteriophage T7 Replisome.
    Foster BM; Rosenberg D; Salvo H; Stephens KL; Bintz BJ; Hammel M; Ellenberger T; Gainey MD; Wallen JR
    Biochemistry; 2019 Nov; 58(45):4466-4479. PubMed ID: 31659895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the interaction of T7 RNA polymerase with promoter.
    Sastry S; Ross BM
    Biochemistry; 1999 Apr; 38(16):4972-81. PubMed ID: 10213599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA polymerase template switching at specific sites on the phi29 genome causes the in vivo accumulation of subgenomic phi29 DNA molecules.
    Murthy V; Meijer WJ; Blanco L; Salas M
    Mol Microbiol; 1998 Aug; 29(3):787-98. PubMed ID: 9723918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage t7 replication proteins.
    Lee J; Chastain PD; Griffith JD; Richardson CC
    J Mol Biol; 2002 Feb; 316(1):19-34. PubMed ID: 11829500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase.
    Yin YW; Steitz TA
    Science; 2002 Nov; 298(5597):1387-95. PubMed ID: 12242451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase.
    Mendez J; Blanco L; Salas M
    EMBO J; 1997 May; 16(9):2519-27. PubMed ID: 9171364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. phi29 DNA polymerase-terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerases.
    Rodríguez I; Lázaro JM; Salas M; De Vega M
    J Mol Biol; 2004 Apr; 337(4):829-41. PubMed ID: 15033354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An invariant lysine residue is involved in catalysis at the 3'-5' exonuclease active site of eukaryotic-type DNA polymerases.
    de Vega M; Ilyina T; Lázaro JM; Salas M; Blanco L
    J Mol Biol; 1997 Jul; 270(1):65-78. PubMed ID: 9231901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.